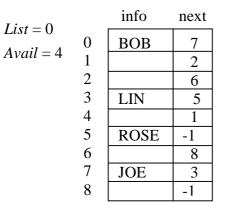
國立高雄大學九十六學年度轉學招生考試試題

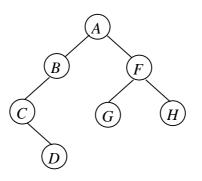
科目:資料結構	系所:資訊工程學系	是否使用計算機:否
考試時間:90分鐘	本科原始成績:100 分	


- 1. A lower triangular matrix A is an *n*-by-*n* array in which $a_{ij} = 0$, if i < j.
 - (1) What is the maximum number of nonzero elements in such an array? (5%)
 - (2) Assume the nonzero elements of the matrix A is represented sequentially in an one-dimensional array b by row major, e.g.,

What is the position in array *b* that stores element a_{ij} ? (10%)

2. Consider the following recursive function.

$$A(m,n) = \begin{cases} m+1, & \text{if } n=0\\ A(m,n-1), & \text{otherwise} \end{cases}$$


- (1) What is the result of A(3, 2)? (5%)
- (2) Write a recursive algorithm to complete this function. (10%)
- 3. Consider an array *NODE* that consists of the linked list pointed to by *List* and another available list of unused nodes pointed to by *Avail*.

- (1) List the elements of the linked list, starting from *List*. (6%)
- (2) Show the resulting array *NODE* after inserting MARY into the linked list starting from *List* so that the resulting list is still in alphabetical order? (7%)
- (3) After inserting MARY, if LIN is removed, what is the resulting array NODE? (7%)

科目:資料結構	系所:資訊工程學系	日不使田計管機・不
考試時間:90分鐘	本科原始成績:100 分	是否使用計算機:否

- 4. Consider the following binary search tree.
 - (1) What are the resulting sequences obtained by traversing the tree in inorder and postorder?(10%)
 - (2) Please show how to represent the binary tree with a sequential array. (10%)
 - (3) Devise an algorithm that can compute the number of leaf nodes for a given binary tree.(10%)

- 5. A "ternary" search algorithm is a divide-and-conquer searching approach which first tests the element at position n/3 for equality with some value *x* and then possibly checks the element at 2n/3 either discovering *x* or reducing the set size to one third of the original.
 - (1) Show the searching steps for searching x = 21 over the following sorted sequences. (10%)
 - 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
 - (2) What is the time complexity of this algorithm? You have to show the derivation. (10%)

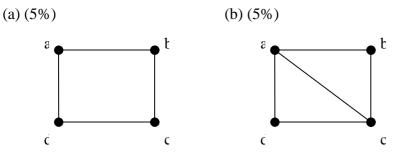
國立高雄大學九十六學年度轉學招生考試試題

科目:離散數學	系所:資訊工程學系	是否使用計算機:否
考試時間:90分鐘	本科原始成績:100 分	定百使用 訂 昇 機 · 百

- 1. Consider the three persons, John, George, and Peter, and 8 different balls, b_1 , b_2 , b_3 , b_4 , b_5 , b_6 , b_7 , and b_8 .
 - (a) (4%) In how many ways can these 8 balls be arranged in a line so that b_1 is not at position 1 and b_2 is not at position 2?
 - (b) (4%) In how many ways can these 8 balls be arranged in a line so that b_i is not at position i, i=1, 2, 3, ..., 8?
 - (c) (4%) In how many ways can these 8 balls be distributed to the three persons?
 - (d) (4%) In how many ways can these 8 balls be distributed to the three persons such that each person gets at least one ball?
 - (e) (4%) In how many ways can these 8 balls be distributed to the three persons such that John does not get b_1 , George does not get b_2 , and Peter does not get b_3 ?
 - (f) (4%) In how many ways can these 8 balls be packed into 3 same boxes so that each box contains at least one ball?
 - (g) (4%) In how many ways can these 8 balls be packed into 3 same boxes (boxes can be empty)?
- 2. In a shop, there are four kinds of flags, red, green, blue, and yellow.
 - (a) (4%) In how many ways can John pick 8 flags?
 - (b) (4%) In how many ways can John pick 8 flags so that each kind of flag is selected at least one?
 - (c) (4%) In how many ways can John pick 8 flags so that each kind of flag is selected at most three?
 - (d) (4%) In how many ways can John pick 8 flags so that he selects an even number of red flags, an odd number of green flags, and any number of blue and yellow flags?
 - (e) (4%) In how many ways can John pick 8 flags so that the number of red flags is less than or equal to the number of green flags, and any number of blue and yellow flags?

3. Let
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}$$
.

- (a) (5%) Compute A^2 , A^3 , A^4 , and A^5 .
- (b) (5%) Conjecture a general formula for A^n , $n \in Z^+$, and establish your conjecture by the Principle of Mathematical Induction.


4. (8%) 42x + 90y = c, $x, y \in Z$, 0 < c < 10, $c \in Z^+$. Find all solutions of x, y, and c.

<u>背面尚有試題</u>

國立高雄大學九十六學年度轉學招生考試試題

科目:離散數學 系所:資訊工程學系 本科原始成績:100分 考試時間:90分鐘

- 是否使用計算機:否
- 5. What is the number of ways to properly color the vertices of the following figures using 6 colors so that if $\{a, b\}$ is an edge, then a and b are colored with different colors?

- 6. (8%) Prove that for all integers x, y, and z, if $x + y + z \ge 0$, then $x \ge 0$ or $y \ge 0$ or $z \ge 0$.
- 7. (8%) For $n \in Z^+$, prove that $3 | (n^3 + 2n)$.
- 8. (8%) Let $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\} \subseteq Z^+$. Show that for some $i \neq j$, $x_i x_j$ is divisible by 7.