科目：工程數學
考試時間：80分鐘

系所：
電機工程學系轉三年級本科原始成績：100分

1．Solve the system of equations：$\left\{\begin{array}{rrr}x+y+z+ & =-4 \\ 2 x+3 y+4 z+5 w & =-6 \\ 4 x+9 y+16 z+25 w & =26 \\ 8 x+27 y+64 z+125 w & =336\end{array}\right.$

2．There exists a linear transformation $T: R^{2} \rightarrow R^{3}$ such that $T(6,17)=(53,-111,-37)^{T}$ and $T(17,6)=(108,65,-106)^{T}$. Find $T(2,3) .(10 \%)$

3．Given $X=(2,1,3,2)^{T}$ and $Y=(-2,4,1,2)^{T}$ ．Let θ be the angle between X and Y ，
a．find the square value of $\sin \theta$ ？（ 10% ）
b．find the normalization of vector projection of Y onto X ？（10\％）

4．Given $\left\{\begin{array}{l}x^{\prime}=2 x+11 y ; \\ y^{\prime}=2 x-7 y .\end{array}\right.$ Also，$x(0)=12, y(0)=1$ ．
a．Find $x(t)$ ？（ 10% ）
b．Find $y(t)$ ？(10%)

5．Given a continuous function $y(x), \quad x \geq 0$ ．Also，let $f(x)=\left\{\begin{array}{ll}1, & x \geq 1 ; \\ 0, & 0 \leq x<1 .\end{array}\right.$ Solve $y^{\prime}+y=f(x)$ with $y(0)=1 .(10 \%)$

6．Given $y^{\prime \prime}+y=(4 x+4) \cdot \cos x$ ．
a．Find the homogeneous solution，$y_{\mathrm{H}}(x)$ ？（15\％）
b．Find the particular solution，$y_{\mathrm{p}}(x)$ ？(15%)

國立高雄大學九十七學年度轉學招生考試試題

科目：電路學
考試時間：80分鐘

系所：
電機工程學系轉三年級 是否使用計算機：是

本科原始成績：100分

1．（20\％）Consider the two－terminal element with the $i-v$ characteristic expressed by the piece－wise linear function as

$$
i(v)=5|v-1|+2|v-4|-|v-6|
$$

where i is the current in ampere and v is the terminal voltage in volt．
（a）（5\％）Plot the $i-v$ curve of this element．
（b）（5\％）Determine the static resistance at $v=2 \mathrm{~V}$ ．
（c）（5\％）Determine the dynamic resistance at $v=2 \mathrm{~V}$ ．
（d）（5\％）Determine the dynamic resistance at $v=5 \mathrm{~V}$ ．

2．（10\％）Given the circuit as shown in Fig． P 2 and $I_{4}=0.5 \mathrm{~A}$ ，find the source voltage V_{o} ．

Fig．P2

3．（15\％）Sketch the straight－line approximation of the Bode plot for the following transfer function．

$$
H(s)=\frac{10^{10}(s+10)}{\left(s+10^{3}\right)\left(s+10^{6}\right)}
$$

4．（15\％）Consider the parallel $R L C$ circuit in Fig．P4．Assume that $v(0)=5 \quad V$ ， $i(0)=0 \mathrm{~A}, \quad L=1 \mathrm{H}, \quad C=10 \mathrm{mF}$ ，and $R=6.25 \Omega$ ．Find $v(t)$ for $t \geq 0$ ．

Fig．P4

5．（20\％）A load with 0.8 lagging power factor absorbs 60 W from a $100-\mathrm{V}$ （effective voltage）， $60-\mathrm{Hz}$ power line．It is required to correct the power factor to 0.9 lagging．
（a）（7\％）Find the effective original line current $\mathbf{I}_{\text {eff org }}$ ．
（b）（6\％）Find the effective final line current $\mathbf{I}_{\text {eff，final }}$ ．
（c）（7\％）Determine the value of the element to be added to achieve the required power factor correction．

6．（20\％）Consider the circuit in Fig．P6．Use the superposition theorem to find the current i ．

Fig．P6

