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Chapter I Combinatorial Analysis

In many experiments with finite possible results, such as tossing one die, it may be reasonable
to assume that all the possible results are equally likely. In that case, a realistic probability model
should be solved by simply counting the number of different ways that a certain event can occur.
The mathematical theory of counting is formally known as combinatorial analysis.

Principle of Counting: If r experiments that are to be performed are such that the first one
may result in any of 1n possible outcomes, and if for each of these 1n possible outcomes there
are 2n possible outcomes of the second experiment, and if for each of the possible outcomes of the
first two experiments there are 3n  possible outcomes of third experiment, and if,…, then there are 

a total of 1n 2n rn possible outcomes of the r experiments.

Example 1-1: How many different 7-place license plates are possible if the first 3 places are
to be occupied by letters and the final 4 by numbers? How many license plates would be possible
if repetition among letters or numbers are prohibited?
Solution: (a) 26*26*26*10*10*10*10 = 175,760,000.

(b) 26*25*24*10*9*8*7 = 78,624,000. 

Example 1-2: How many functions defined on n points are possible if each functional value

is either 0 or 1? Solution: 2n. 

Permutation is the ordered arrangements of a set of n objects. How many different ordered
arrangements of a set of n objects? There are !)1)(2)(3()2)(1( nnnn   possible orders.

We might want to determine the number of permutations of n objects, of which 1n are alike, 2n

are alike,…, rn are alike, given that nnnn r  21 . There are
!!!

!
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n
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different

permutations.

We are often interested in determining the number of different groups of r objects that could be
formed from a total of n objects (combinations). If the order is relevant, say permutations, there
are )1()2)(1(  rnnnn  possible permutations. Since every group consists of the same
items will be counted !)1)(2()2)(1( rrrr   times, it follows that the total number of

groups that can be formed is
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. It can be proved

by combinatorial argument. Consider a group of n objects and fix attention on some particular one
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of these objectscall it object 1. Now, there are 
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combinations of size r that do not contain object 1. As there

are a total of 
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combinations of size r. The value 
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are often referred to as binomial

coefficients.

Binomial theorem:   knk
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Proof by Induction: When n = 1, Equation (1.1) reduces to 0110

1
1

0
1

yxyxyx 
















 .

Assume Equation (1.1) for 1n . Now

1))(()(  nn yxyxyx














 


1

0

11
)(

n

k

knk yx
k

n
yx



















 








 


1

0

1

0

11 11 n

k

knk
n

k

knk yx
k

n
yx

k
n

.

Letting 1ki in the first sum and ki  in the second sum, we find that
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We now consider the following problem: A set of n distinct items is to be divided into r
distinct groups of respective sizes ,,,, 21 rnnn  where nnnn r  21 . How many

different divisions are possible? To answer this, we note that there are 
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second group; and so on. Hence, there are
!!!
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Example 1-3: In how many ways can a man divide 7 gifts among his 3 children if the eldest

is to receive 3 gifts and the others 2 each? Answer:
!2!2!3
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Example 1-4: In order to play a game of basketball, 10 boys at a playground divide
themselves into two teams of 5 each. How many different divisions are possible?
Solution: Note that this example is different from the previous one since now the order of the two

teams is irrelevant. The answer is 126!2
!5!5
!10

 . 

The Multinomial Theorem: r
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That is, the sum is over all nonnegative integer-valued vectors ),,,( 21 rnnn  such that
nnnn r  21 .

Proof: The proof is left as an exercise. 

There are nr possible outcomes when n distinguishable balls are to be distributed into r
distinguishable urns. Suppose that the n balls are indistinguishable from each other. In this case,
how many different outcomes are possible? In other words, it is to find the number of distinct
nonnegative integer-valued vector ),,,( 21 rxxx  such that nxxx r  21 . It can be

imagined that we have n indistinguishable objects lined up and that we want to divide them into r
nonempty groups.

.""objectsfrom""spacetheof1Choose 






nr


Figure 1-1

To do so, we can select r –1 of the n –1 spaces between adjacent objects as our dividing points.

(See Figure 1-1.) As there are 

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possible selections, we obtain the following proposition.

Proposition 1-1: There are 
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r
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distinct positive integer-valued vectors ),,,( 21 rxxx 

satisfying .,,1,0,21 rixnxxx ir   

Note that the number of nonnegative solutions of nxxx r  21 is the same as the
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number of positive solutions of rnyyy r  21 (let rixy ii ,,1,1  ).

Hence, from Proposition 1-1, we obtain the following proposition.

Proposition 1-2: There are 
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),,,( 21 rxxx  satisfying nxxx r  21 . 

Example 1-5: An investor has 20 thousand dollars to invest among 4 possible investments.
Each investment must be in units of a thousand dollars. If the total 20 thousand is to be invested,
how many different investment strategies are possible? What if each investment need be invested
at least one thousand dollars? What if not all the money need be invested?

Solution: If we let ,iy i = 1, 2, 3, 4, denote the number of thousands invested in investment
number i, then, when all is to be invested, ),,,( 4321 yyyy are integers satisfying

0,204321  iyyyyy .

Hence, by Proposition 1-2, there are 1771
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If each investment need be invested at least one thousand dollars, if we let ix , i = 1, 2, 3, 4, be

the number of thousands invested in investment i, a strategy is a positive integer-valued vectors
),,,( 4321 xxxx satisfying

0,204321  ixxxxx .

Hence, by Proposition 1-1, there are 969
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If not all of the money need be invested, then, if we let 5y denote the amount kept in reserve,
a strategy is a nonnegative inter-valued vector ),,,,( 54321 yyyyy satisfying

0,2054321  iyyyyyy .

Hence, by Proposition 1-2, there are 10626
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Proof: Consider a group of n men and m women. We want to find the number of different
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