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Chapter III Random Variables

3.1 Random variables

A sample space S may be difficult to describe if the elements of S are not numbers. We shall
discuss how we can use a rule by which an element s of S may be associated with a number x.

Definition 3.1-1: Given a random experiment with a sample space S, a function X that
assigns to each element s in S one and only one real number xsX )( is called a random

variable. The space of X is the set of real numbers  SssXxx  ),(: , where Ss  means

the element s belongs to the set S. 

Example 3.1-1: In example 2.3-1, we had the sample space },{ THS  . Let X be a
function defined on S such that 1)( HX and 0)( TX . Thus X is a real-function that has the

sample space S as its domain and the space of real numbers  1,0: xx as its range. 

Note that it may be that the set S has elements that are themselves real numbers. In such
instance we could write ssX )( so that X is the identity function and the space of X is also S.

Example 3.1-2: In example 2.3-2, the sample space is }6,5,4,3,2,1{S . For each
Ss  , let ssX )( . The space of the random variable X is then }6,5,4,3,2,1{ . 

If we want to find the probabilities associated with events described in terms of X, we use the
probabilities of those events in the original space S if they are known. For instance,

})(aand:{)( bsXSssPbXaP  .

The probabilities are induced on the points of the space of X by the probabilities assigned to
outcomes of the sample space S through the function X. Hence, the probability )( xXP  is

often called an induced probability.

Example 3.1-3: In example 2.3-1, we associate a probability of 2/1 for each outcome,
then, for example, 2/1)0()1(  XPXP . 

Example 3.1-4: Three balls are to be randomly selected without replacement from an urn
containing 20 balls numbered 1 through 20. If we bet that at least one of the drawn balls has a
number as large as or larger than 17, what is the probability that we win the bet?

Solution: Let X denote the largest number selected. Then X is a random variable taking on one

of the values 3, 4,…, 20.  Furthermore, if we suppose that each of the 







3
20

possible selections is

equally likely to occur, then

  20,,4,3
3
20

2
1

















 i

i
iXP .
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The above equation follows because the number of the selections that result in the event  iX 

is just the number of selections that result in ball numbered i and two of the balls numbered 1

through 1i being chosen. As there are clearly 















2

1
1
1 i

such selections, we obtain the

probabilities expressed in above equation. From this equation we see that

  15.0
20
3

3
20

2
19

20 















XP

  134.0
380
51

3
20

2
18

19 















XP

  119.0
285
34

3
20

2
17

18 















XP

  105.0
19
2

3
20

2
16

17 















XP

Hence, as the event  17X is the union of the disjoint (mutually exclusive) events  iX  , i =

17, 18, 19, 20, it follows that the probability of our winning the bet is given by

  508.015.0134.0119.0105.017 XP . 

There are two major difficulties here:
(1) In many practical situations the probabilities assigned to the events A of the sample space S are

unknown.
(2) Since there are many ways of defining a function X on S, which function do we want to use?

In considering (1), we need, through repeated observations (called sampling), to estimate these
probabilities or percentages. One obvious way of estimating these is by use of the relative
frequency after a number of observations. If additional assumptions can be made, we will study,
in this course, other ways of estimating probabilities. It is this latter aspect with which
mathematical statistics is concerned. That is, if we assume certain models, we find that the theory
of statistics can explain how best to draw conclusions or make predictions.

For (2), statisticians try to determine what measurement (or measurements) should be taken on
an outcome; that is, how best do we “mathematize” the outcome?  These measurement problems 
are most difficult and can only be answered by getting involved in a practical project.
Nevertheless, in many instances it is clear exactly what function X the experimenter wants to define
on the sample space. For example, the die game in Example 2.3-2 is concerned about the number
of the spot, say X, which is up on the die.

Definition 3.1-2: A random variable X is said to be discrete if it can assume only a finite or
countably infinite1 number of distinct values. 

1 A set of elements is countably infinite if the elements in the set can be put into one-to-one correspondence with the
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Definition 3.1-3: The probability that X takes on the value x, )( xXP  , is the defined as

the sum of the probabilities of all sample points in S that are assigned the value x. 

For a random variable X of the discrete type, the induced probability )( xXP  is frequently
denoted by )(xf , and this function )(xf is called the discrete probability density function (pdf).
Note that some authors refer to )(xf as the probability function (pf), the frequency function, or

the probability mass function (pmf). We will use the terminology pmf in this course.

Example 3.1-5: A supervisor in a manufacturing plant has three men and three women
working for him. He wants to choose two workers for a special job. Not wishing to show any
biases in his selection, he decides to select the two workers at random. Let X denote the number of
women in his selection. Find the probability distribution for X.

Solution: The supervisor can select two workers from six in 15
2
6









ways. Hence S contains

15 sample points, which we assume to be equally likely because random sampling was employed.
Thus ,151)( iEP for i = 1, 2, …, 15.  The value for X that have nonzero probability are 0, 1,

and 2. The number of ways of selecting X = 0 women is 















2
3

0
3

. Thus there are 3
2
3

0
3


















sample points in the event X = 0, and

5
1
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3
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2
3

0
3

)0()0( 








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







 XPf .

Similarly,

5
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9
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1
3

1
3

)1()1( 




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


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







 XPf
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

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











 XPf .

Table or histogram can represent the above results, but the most concise method of representing
discrete probability distributions is by means of a formula. The formula for f(x) can be written as






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
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


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
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


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





2
6
2

33

)(
xx

xf , x = 0, 1, 2.

Notice that the probabilities associated with all distinct value of a discrete random variable must
sum to one. 

positive integers.
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Theorem 3.1-1: A function )(xf is a pmf if and only if it satisfies both of the following
properties for at most a countably infinite set of real values ,, 21 xx :
1. 1)(0  ixf for all xi.

2.  
ix ixf

all
1)( .

Proof: 1)(0  ixf follows from the fact that the value of a discrete pmf is a probability and

must be nonnegative. Since ,, 21 xx represent all possible values of X, the events
],[],[ 21 xXxX  constitute an exhaustive partition of the sample space. Thus,

  
i ix x ii xXPxfall all 1][)( . 

Definition 3.1-4: The cumulative distribution function (CDF), or simply referred to as the
distribution function, of a discrete random variable X is defined for any real x by

  



xt

tfxXPxF )()( . 

Example 3.1-6: The probability mass function of a random variable X is given by
,,1,0,!)(  xxcxf x where is some positive value. Find }0{ XP and }2{ XP .

Solution: Since 1)(
0




x
xf , we have that

1
!0




x

x

x
c



implying, because 


0 !x

x

x
e

 , that 1ce or ec . Hence,

   eeXP !0}0{ 0 .

21}2{}1{}0{1}2{ 2     eeeXPXPXPXP .

The cumulative distribution function )(F can be expressed in terms of )(f by


ax

xfaF
all

)()( , a = 0, 1, 2, ….  

Definition 3.1-5: A random variable X is called a continuous random variable if there is a
function )(xf , called the probability density function (pdf) of X, such that the CDF can be

represented as

dttfxF
x


 )()( . 

The above defining property provides a way to derive the CDF when the pdf is given, and it
follows by the Fundamental Theorem of Calculus that the pdf can be obtained from the CDF by
differentiation. Specifically,



Mathematical Statistics
***********************************************************************************************************

35

)()()( xFxF
dx
d

xf 

whenever the derivative exists.

Theorem 3.1-2: A function )(xf is a pdf for some continuous random variable X if and

only if it satisfies the properties

1. 0)( xf for all real x.

2. 1)( 



xf . 

Properties of a CDF )(xF :
(a) 1)(0  xF since )(xF is a probability.
(b) )(xF is a non-decreasing function of x. For instance, if ba  , then

     bxaxaxxbxx  ::: and )()()( bXaPaXPbXP  .
That is, 0)()()(  bXaPaFbF .

(c) From the proof of (b), it is observed that if ba  , then )()()( aFbFbxaP  .

(d) 0)(lim 


xF
x

and 1)(lim 


xF
x

because the set  xx : is the entire

one-dimensional space and the set  xx : is the null set.
(e) )(xF is continuous to the right at each point x.
(f) If X is a random variable of the discrete type, then )(xF is a step function, and the height of

a step at x, x , equals the probability )( xXP  .
(g) If X is a continuous random variable, then )(xF is a continuous function. The probability

)( bxaP  is the area bounded by the graph of )(xf , the x-axis, and the lines ax  and

bx  . Furthermore, the probability at any particular point is zero.

Example 3.1-7: Suppose that X is a continuous random variable whose probability density
function is given by



 


otherwise0

20)24(
)(

2 xxxc
xf .

(a) What is the value c?
(b) Find }1{ XP ?

Solution: Since f is a probability density function, we must have that 1)(  dxxf , implying

that 1)24(
2

0
2  dxxxc . Hence,

8
3

1
3

2
2

2

0

3
2 














c
x

xc
x

x

.
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  21)24(83}1{
2

1
2   dxxxXP .

The cumulative distribution function F is given by

      32283)24(83)()( 32
0

2 xxdtttdttfxF
xx

 
, 0 < x < 2. 

Example 3.1-8: The distribution function of the random variable Y is given by






















.31
3212/11
213/2
102/
00

)(

y
y
y
yy
y

yF

A graph of )(yF is presented in Figure 3-1.

y

F (y)
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○

Figure 3-1 Graph of F (y)

Compute }3{ YP , }1{ YP , }5.0{ YP , and }42{ YP .

Solution:
12
111

3lim
1

3lim}3{ 













 

 n
F

n
YPYP

nn
.

6
1

2
1

3
21

1lim)1(}1{}1{}1{ 







 n
FFXPYPYP

n
.

  75.0)5.0(15.01}5.0{  FYPYP .
121)2()4(}42{  FFYP . 

Example 3.1-9: An Unbounded Density Function
Let the random variable X have the distribution function )(xF given by:
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













.1if1
10if

0if0
)( 21

x
xx

x
xF

Then X has a density function )(xf given by





 


otherwise.0

10if
2

1
)( 21

x
xxf

Note that )(xf is unbounded for x near zero. In fact, as x approaches zero by positive value,
)(xf tends toward infinity slowly enough so that the density function still integrates to one. An

alternative example is the density of the chi-squared distribution with one degree of freedom. 

Definition 3.1-6: If 0 < p < 1, a 100 pth percentile of the distribution of a random variable

X is the smallest value, xp, such that pxF p )( . 

In essence, xp is the value such that 100 p% of the population values are less than or equal to
xp. We can also think in terms of a proportion p rather than a percentage 100 p of the population,
and xp is often referred to as a pth quantile. If X is continuous, then xp is a solution to the equation

pxF p )( .

Example 3.1-10: Consider the distribution of lifetimes, X (in months), of a particular type of
component. We will assume that the CDF has the form

   0,3exp1)( 2  xxxF

and zero otherwise. The median lifetime is

   498.22ln35.01ln3 5.0 m months.

It is desired to find the time t such that 10% of the components fail before t. This is the 10%
percentile:

   months.974.0)9.0ln(31.01ln3 5.0
10.0 x

Thus, if the components are guaranteed for one month, slightly more than 10% will need to be
replaced. 

3.2 Mathematical Expectation

One of the most important concepts in probability theory is that of the mathematical
expectation of a random variable.
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Definition 3.2-1: Let X be a random variable having a pdf (or pmf) )(xf , and let )(Xu be
a function of X. Then the mathematical expectation of )(Xu , denoted by  )(XuE , is defined to

be   dxxfxuXuE 



 )()()(

if X is a continuous type of random variable, or

  
x

xfxuXuE )()()(

if X is a discrete type of random variable. 

Remarks: The usual definition of  )(XuE requires that the integral (or sum) converge

absolutely. That is, 



dxxfxu )()( (or 

x
xfxu )()( ).

Theorem 3.2-1: Let X be a random variable having a pmf (or pdf) )(xf . Mathematical
expectation )(E , if it exists, satisfies the following properties:
(a) If c us a constant, ccE )( .

(b) If c is a constant and u is a function,    )()( XucEXcuE  .
(c) If 1c and 2c are constants and 1u and 2u are functions, then

     )()()()( 22112211 XuEcXuEcXucXucE  .

Proof: First, we have for the proof of (a) that  
xx

cxfcxcfcE )()()( .

Next, to prove (b), we see that    )()()()()()( XuEcxfxucxfxcuXcuE
xx
  .

Finally, the proof of (c) is given by

      
xx x

xfxucxfxucxfxucxucXucXucE )()()()()()()()()( 221122112211 .

By applying (b), we obtain      )()()()( 22112211 XuEcXuEcXucXucE  .

Property (c) can be extended to more than two terms by mathematical induction; that is, we
have

 










k

i
ii

k

i
ii XuEcXucE

11
)()()c( .

Because of property )c( , mathematical expectation )(E is called a linear or distributive operator.



Certain mathematical expectations, if they exist, have special names and symbols to represent
them. First, let XXu )( , where X is a random variable of the discrete type having a pmf )(xf .

Then  
x

xfxXE )( .

If the discrete points of the space of positive probabilities are ,,, 21 aa then
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.)()()()( 332211  afaafaafaXE

This sum of product is seen to be a “weighted average” of the values ,,, 21 aa  the “weight” 
associated with each ia being )( iaf . This suggests that we call )(XE the mean value of X

(or the mean value of the distribution). The mean value of a random variable X is defined, when
it exists, to be )(XE .

Another special mathematical expectation is obtained by taking 2)()(  XXu . If X is a

random variable of the discrete type having a pmf )(xf , then

    )()()()()()()( 2
2

21
2

1
22 afaafaxfXXE

x
 ,

where ,,, 21 aa are the discrete points of the space of positive probabilities. This sum of

product may be interpreted as a “weighted average” of the squares of the deviations of the numbers
,,, 21 aa from the mean value of those numbers where the “weight” associated with each 

2)( ia is )( iaf . This mean value of the square of the deviation of X from its mean value is

called the variance of X (or the variance of the distribution). The variance of X will be denoted by

 22 )(   XE , if it exists. The variance can be computed in another manner:

         22222222 22)(   XEXEXEXXEXE .

It frequently affords an easier way of computing the variance of X.

It is customary to call (the positive square root of the variance) the standard deviation of X
(or the standard deviation of the distribution). The number  is sometimes interpreted as a
measure of the dispersion of the points of the space relative to the mean value . We note that if
the space contains only one point x for which 0)( xf , then = 0.

We next define a third special mathematical expectation, called the moment generating
function of a random variable X.

Definition 3.2-2: If X is a random variable, the expected value

 XteEtM )(

is called the moment generating function (MGF) of X if this expected value exists for all values of
t in some open interval containing 0 of the form hth  for some h > 0. 

It is evident that if we set t = 0, we have 1)0( M . The moment generating function is

unique and completely determines the distribution of the random variable; thus, if two random
variables have the same moment generating function, they have the same distribution. If a discrete
random variable X has a pmf )(xf with support  ,, 21 bb , then
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 21 )()()()( 21
btbt

x

xt ebfebfxfetM .

Hence, the coefficient of ibte is )()( ii bXPbf  . That is, if we write a moment generating

function of a discrete-type random variable X in the above form, the probability of any value of X,

say bi, is the coefficient of ibte .

Example 3.2-1: Let the moment generating function of X be defined by

ttttt eeeeetM 5432

15
5

15
4

15
3

15
2

15
1

)(  .

Then, for example, the coefficient of te2 is 152 . Thus 152)2()2(  XPf . In general,
we see that the pmf of X is 15)( xxf  , x = 1, 2, 3, 4, 5. 

Definition 3.2-3: Let X be a random variable and let r be a positive integer. If  rXE
exists, it is called the rth moment of the distribution about the origin. In addition, the expectation

  rbXE  is called the rth moment of the distribution about b. 

Theorem 3.2-2: If the moment generating function of X exists, then

 
0

)( )(
)0(









t
r

r
rr

dt
tMd

MXE for all r =1, 2, 3,…

Proof: From the theory of mathematical analysis, it can be shown that the existence of )(tM , for
hth  , implies that derivatives of )(tM of all orders exists at t = 0; moreover, it is

permissible to interchange of the differentiation and expectation operator. Thus,

dxxfxetM
dt

tdM tx



 )()(

)(
,

if X is of the continuous type, or


x

xt xfxetM
dt

tdM
)()(

)(

if X is of the discrete type. Setting t = 0, we have in either case

 )()0( XEM .

The second derivative of )(tM is

dxxfextM tx



 )()( 2 or 

x

xt xfextM )()( 2 ,

so that )()0( 2XEM  .

In general, if r is a positive integer, we have, by repeated differentiation with respect to t,
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)()0()( rr XEM  . 

Note that  22 )0()0( MM  . Since )(tM generates the value of  rXE , it is called

the moment generating function.

When the moment generating function exists, derivatives of all orders exist at t = 0. Thus it is
possible to represent )(tM  as a Maclaurin’s series, namely,





























!3
)0(

!2
)0(

!1
)0()0()(

32 t
M

t
M

t
MMtM .

That is, if the Maclaurin’s series expansion of )(tM can be found, the rth moment of X,  rXE ,

is the coefficient of !rt r . Or, if )(tM exists and the moments are given, we can frequently sum
the Maclaurin’s series to obtain the closed form of )(tM . These points are illustrated in the next
two examples.

Example 3.2-2: Suppose that the random variable X has the moment generating function

 tttt eeeetM 22 1
5
1

)(  

for all real t. Using the series expansion of ue , the Maclaurin’s series of )(tM is easily found to

be  



























!5
)21(2

!45
)161(2

!25
)41(2

1)(
42

r
ttt

tM
rr

;

here r is even. Since the coefficient of !rt r is zero when r is odd, we have

   



















,6,4,2,
5

212

,5,3,1,0

r

r
XE r

r

In particular, 0)(  XE and 2
5

)21(2 2
2

2 


  . 

Example 3.2-3: Let the moment of X be defined by

  ,3,2,1,8.0  rXE r .

The moment generating function of X is then

tt

r

r

r

r

r

r

ee
r
t

r
t

r
t

MtM 8.02.0
!

8.02.0
!

8.01
!

8.0)0()( 0

011









 












.

Thus, 2.0)0( XP and 8.0)1( XP . 

Result: Suppose that the moment generating function of X exists. Let )(ln)( tMtR  and
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)0()(kR denote the kth derivative of )(tR evaluated for t = 0. Then

 )()0()1( XER and   222)2( )0(   XER .

Proof: )(
)0(
)0(

)(
)()(

00

XE
M
M

tM
tM

dt
tdR

tt










.

    222
2

2

0
2

0
2

2

)()(
)0(

)0()0(
)(

)()()()()(










XEXE
M

MM
tM

tMtMtMtM
dt

tRd

tt

. 

Example 3.2-4: A random variable with infinite mean
Let X have the density function



 


otherwise.,0

1,1
)(

2 xx
xf

Then the expected values of X is

  


dxxxXE
1

21)( . 

Example 3.2-5: A random variable whose mean does not exist
Let the continuous random variable X have the Cauchy distribution centered at the origin with
density given by

  


 x
x

xf ,
1

1
)(

2
.

The mean of X is then

 










 )1log(

2
1

1
)( 2

2
xdx

x

x
XE



and this integral does not exist since

 


dxxxfdxxxf

0

0
)()( . 

Example 3.2-6: A random variable whose first moment exists but no higher moments
exist
Let the random variable X have a density given by

  xxxf 1,
2
3

)( 25 .

Then the expected value of X is
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33
2
3

)(
1

21

1

23 
  xdxxXE .

However, for integer values of k > 1, we find that







 
1

23

1

25

23
23

2
3

)( kkk x
k

dxxXE .

In fact, for this example the moment of order k dose exist, although it is infinite. We may modify
the example slightly to achieve a case where the higher moments would be of the form  and
therefore would not exist. To do this, let the density have the same basic form but be symmetric
about zero:

  xxxg 1,
4
3

)( 25 .

More generally, the Student’s t-distribution with r + 1 degrees of freedom has moments of order 0,
1, …, r, but no higher moments exist. 

Example 3.2-7: A random variable whose moment generating function does not exist
Suppose the random variable X has the Cauchy distribution with density given by

  


 x
x

xf ,
1

1
)(

2
The integral

 dx
x

eeE xtXt 


 


21
1

)(


is infinite for any 0t since  21 xe xt  is positive for  x and tends to  as

x . Thus the moment generating function does not exist in this example. 

Example 3.2-8: A random variable, all of whose moment exist, but whose moment
generating function dose not exist
Existence (finiteness) of the moment generating function for some t > 0 implies that all moments
exist and are finite; however, the converse is false. Consider the lognormal distribution, which is

the distribution of XeY  where X has a normal distribution. Suppose X has mean zero and
variance one, so that Y has the standard lognormal distribution. The moments of Y exist for all
orders k = 1, 2, 3,… since

   
   

 
























 











2
exp

22
exp

2

1

2

1 222

21
2

21

2 k
dx

kkx
dxeeeEYE xxkXkk


.

However, the moment generating function does not exists since if t > 0,
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   
 

dxeeEeE xetekYt xX











 2

21

2

2

1



 






















 


dx

xxx
xt

0

232

21 262
1exp

2

1



since the exponential term is a third-degree polynomial in x for which the 3x term has a positive
coefficient; this exponential must then tend to as x . Therefore the moment generating
function of Y does not exist. 

Remark. In more advanced course, we would not work with the moment generating function
since so many distributions do not have moment generating functions. Instead, we would let i

denote the imaginary unit, t an arbitrary real, and we would define  itXeEt )( . This

expectation exists for every distribution and it is called the characteristic function of the
distribution. To see why )(t exists for all real t, we note, in the continuous case, that its

absolute value dxxfedxxfet itxitx 







 )()()( .

However, )()( xfxf  since )(xf is nonnegative and

1sincossincos 22  txtxtxitxe itx .

Thus 1)()()()(  











dxxfdxxfedxxfet itxitx .

Every distribution has a unique characteristic function; and to each characteristic function there
corresponds a unique distribution of probability. If X has a distribution with characteristic

function )(t , then for instance, if )(XE and )( 2XE exist, they are given, respectively, by

)0()( XiE and )0()( 22 XEi . It may write )()( itMt  .

3.3 Chebyshev’s Inequality

Theorem 3.3-1 (Markov’s Inequality):  If X is a random variable that takes only
nonnegative values, then for any value a > 0

 
a
XE

aXP
)(

 .

Proof: We give a proof for the case where X is continuous with density f.

dxxxfdxxxfdxxxfXE
a

a




 )()()()(
00
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dxxxf
a


 )(

)()()( aXaPdxxfadxxaf
aa

 


and the result is proved. 

Theorem 3.3-2 (Chebyshev’s Inequality):  If X is a random variable with finite mean and

variance 2 , then for any value b > 0

 
2

2

b
bXP


  .

Proof: Since 2)( X is nonnegative random variable, we can apply Markov’s inequality (with 

2ba  ) to obtain

     
2

2
22

b

XE
bXP





 .

But since   22 bX  if and only if bX  , we have

 
  

2

2

2

2

bb

XE
bXP


 




and the proof is complete. 

The importance of Markov’s and Chebyshev’s inequalities is that they enable us to derivative 
bounds on probabilities when only the mean, or both the mean and the variance, of the probability
distribution are known. Of course, if the actual distribution were known, then the desired
probabilities could be exactly computed and we would not need to resort to bounds.

Example 3.3-1: Suppose that it is known that the number of items produced in a factory
during a week is a random variable with mean 50.
(a) What can be said about the probability that this week’s production will exceed 75?
(b) If the variance of a week’s production is known to equal 25, then what can be said about the 
probability that this week’s production will be between 40 and 60?

Solution: Let X be the number of items that will be produced in a week:

(a) By Markov’s inequality,
3
2

75
50

75
)(

)75( 
XE

XP .

(b) By Chebyshev’s inequality  
4
1

10
1050 2

2




XP .
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Hence,  
4
3

4
1

11050 XP . 

Notethat although Chebyshev’s inequality is valid for all distributions of the random variable
X, we cannot expect the bound on the probability to be very close to the actual probability in most
case.


