Quantitative Method

Assignment 1

Due October 11, 2005

1. For the matrices $\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 4 & 1 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 2 & 4 \\ 1 & 5 \\ 6 & 2 \end{bmatrix}$, compute \mathbf{AB} , $\mathbf{A'B'}$, and \mathbf{BA} . 2. Evaluate the determinant of $\mathbf{D} = \begin{bmatrix} 2 & 1 & -3 & 1 \\ -3 & -2 & 0 & 2 \\ 2 & 1 & 0 & -1 \\ 1 & 0 & 1 & 2 \end{bmatrix}$ 3. Calculate det(\mathbf{B}), tr(\mathbf{B}) and \mathbf{B}^{-1} for $\mathbf{B} = \begin{bmatrix} 4 & 1 & -1 \\ 0 & 3 & 2 \\ 3 & 0 & 7 \end{bmatrix}$. 4. Find the inverse of $\mathbf{B} = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 3 & 9 & 0 & 0 & 0 \\ 0 & 0 & 2 & -2 & -1 \\ 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 0 & -1 \end{bmatrix}$ if it exists.

- 5. Prove that tr(AB) = tr(BA) where A and B are any two matrices that are conformable for both multiplications. They need not be square.
- 6. For a square matrix **A**, suppose that there is an $\mathbf{x} \neq \mathbf{0}$ such that $\mathbf{A}\mathbf{x} = \mathbf{0}$. Explain why **A** is singular.
- 7. Find the rank of $(\mathbf{1}_n(\mathbf{1}'_n\mathbf{1}_n)^{-1}\mathbf{1}'_n)$, where $\mathbf{1}'_n = (1,1,\ldots,1) \in \mathfrak{R}^n$.