Quantitative Method

Assignment 6

Due November 15, 2005

- 1. Suppose that Z is a standard normal random variable and that Y_1 and Y_2 are χ^2 distributed random variables with v_1 and v_2 degrees of freedom, respectively. Further, assume that Z, Y_1 , and Y_2 are mutually independent.
 - (a) Suppose that *X* has a gamma distribution with parameter α and θ , *X* ~ Gamma (α , θ). Show that $E(X^k) = \frac{\theta^k \Gamma(\alpha + k)}{\Gamma(\alpha)}$ for $(\alpha + k) > 0$.
 - (b) Define $T = \frac{Z}{\sqrt{Y_1/v_1}}$. Find E(T) and Var(T). [*Hint:* $T = Z\left(\frac{1}{\sqrt{Y_1/v_1}}\right) = g(Z)h(Y_1)$] (c) Define $F = \frac{Y_1/v_1}{Y_2/v_2}$. Find E(F) and Var(F). Use the hint from (b).
- 2. Problem 2.2 on Page 62.
- 3. Problem 2.8 on Page 64.
- 4. Problem 2.9 on Page 64.