Simple Regression (Appendix)

Recall that

T = = T =

by - 2K =N -T) 3= X, AL
Zthl(Xt_X) ZtT:l(Xt_X)

since > (X, -X)=0. Let
X, -X
w, = T( ! )_2 . (A.2)
thl (Xt - X)
Each w, isa constant, since Xs are fixed. Substituting into the equation (A.1), we have
T
by =2 4w, (A.3)

which expresses the estimated parameter as a weighted sum of the observations on the

dependent variables. It is obvious that Zthlw, =0. According to the definition of w,,

since D" w, X =0

T - T T v 7 -
Zt:ltht = ZzﬂWtXt"‘Z;:lth—zt:th(Xt_X)
T - )2
thl(Xt _X)

X, -X .
; }(X’ ST R P

i z”[z?loc X

=1

ReSUIt 1: E(bz) = ﬁz.

Proof: Since Y, =+ /X, +e,,
T
by =) wl\b+LX,+e
2 Zt_l t( 1 244t t) (A.4)

=p+ Zthl W€
from the facts that Zthlwt =0 and Zthl w, X, =1. Therefore,
E(by)=pp, + ZtT:]_WtE(et): B

since E(e,)=0. m

ReSUIt 2: Val"(bz) = ﬁ
(Xt _X)
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Proof: Var(b,) = Cov(b,,b,) = Cov@z - ZJT.lejej, By + ZtT:]_Wtet)

:Cov(ZJT.zleej, Zlewtet) since 3, is constant
T T

= ZijwtCov(ej, e,)
j=1=1

= ZthlwaOV(et, e,) since Cov(ej, ez): 0 for j=#¢

=57 wWar(e,)=3" w?c? = o? th:l(X_)?)z
=2 awiVarle)= 2, wi (ZT:(Xt—)_()Z)Z

O_2
= . =

ZtT:(Xt _)?)2

Result3:  E(H) = 4.

Proof: b =Y —b,X = 1+ﬂ2X+Z,1Tt) by X = p1 - (b, ﬂZ)X+Ztth

Hence, E(bl):ﬂl—(E(bz)—ﬂ2)+ZzT1%E( )=, since E(by)=p, and E(e,)=0.m

Result4: Cov(Y, b,)=0.

Proof: Cov(Y, b,) = Cov(z 1T Y, Zt wiY,) = ZJ 1Zt lTw,Cov( Y,)

=Y 13 wConY,, Y,) since Cov(Y,,Y,)=0 for j=1
Zz 1thVar( )= ZtTl;WtO- =0 since ZtT:thZO- -
ol

Result5:  Var(b,) =
Yy, -XF
Proof:  Var(b,)= Cov(b, by)=C (Y bX,Y —b X )

= Cov(Y, ) (— - bZX)-i- Cov(?, - bz)?)+ Cov(— bz)?, 7)
= COV(Y, ) X2Cov (b, by)— )?Cov(?, bz)—)_(Cov(bz, 7)
= Var(7)+ X?Var(b,) since Cov(Y, b,)=0
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2 252 2T 2
o o X o> X
:—+ — t—l t . -

T Ztrzl(Xt _)?)2 TZ;Tzl(Xt _)?)2

—o%X
Zthl (Xt - )_()2

Proof:  Cov(by, b,)= COV(Y ~ by X, bz): Cov(?, by )— X Cov(by, by)=—X Var(b,)

Result 6:  Cov(by, b,) =

~o’X
= .

Zthl (Xt - )?)2

The Gauss-Markov Theorem (The OLS estimators are BLUES)
Proof: We only prove the slope term b,. It is also true for the intercept term b;.
Consider a general linear combination of the Ys that takes the form ,52 = Zled,Yt , Where
d, is nonrandom. The best linear unbiased estimator (BLUE) has the two properties: (1)
52 is unbiased and (2) Var(ﬂ}) is the smallest within the class of linear and unbiased

estimators. Definea,=d,—w, We have

~

By = ZtT L +a,)Y, = Zt WY +Zt a:Y, =b, +Zt (4 (BL+ X, +e)
=b, + ﬁ1Z,T:1at + o ZtT:la,Xt + ZtT:la,et
E(ﬁz ) = E(by)+ ﬂlth:]_ a; + P Zthlaer + Zthl a,Ee,)
) +ﬂ12t 19 +ﬁzzt 14X,
For ﬁz to be unbiased, we need this to be S, , which can happen if and only if
Zthla, =0 and Zthlath =0
Var(fy )= CovlBy, 2)= COV(Zle(Wj va; )y Xy (w+a)y z)
=COV(Z] Wi J’zt Wit )+C0v@ -19j J’Ztl )+2C0V(Z 1" J’Ztl )

= Cov(b,, by )+ ZtT:latzVar(Y,)+ ZZthl w,aVar(Y,) since Cov(Yj, Y,)z 0 for j=#t

= Var(b2)+ ZtT:latzaz + ZZtT:l wta,a2
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thzl (Xz - )?)az _ ZthlXtat - )72,21611
Zthl(Xt _)?)2 Zthl(Xt _)?)2

The third term is zero since Zthlwtat =

Because Z atO' >0, we have proved the Gauss-Markov theorem. That is,

Var(ﬁz ) > Var(bz ) . m

Result 7: Zleét =0.

Proof. 31 =3,V — %) =X ), (0~ by — by X, )= X1, Y, - X1 b - 2 b,
=77 - (Y -b,X)- 6,3 X, =TY —(IY = b,TX)-b,TX =0. m
Result8: > _¢X, =
Proof: YT X, =" (Y, ~b b X)X, =3 (Y, - (Y b, X)- b, X, )X,
=3 -7)x, -6,3 (X, - X)X,
=YL -7 Nx, - X)-b 3, (X, - X)X, - X)

sinceY (Y, -Y)X=%" (x,-X)Xx=0

=0. m since b, z’l(Y 7 )X, %)
> (x, -x)
Result9: £(52)= > &2 /(T - 2]
-~ _ _ 2
Proof: Y &2=3" (v,-b - =T B+ X, +e,)~ (Y —b,X)- by X,]

=SB Bk v o) - (Bt X 20, X)-bpx, ] e=YTiefT
=SB (%, - X)+ e -2)- by (x, - X

=YL o - ), - D)+ e -]

= by = AP XL (X, = XF + 2 (e =2 =206, = )T, (X, ~ X e, —2)
= (b= B P (X, = XY + 2 (e —2f =2ty - B)3 L, (X, - X e,
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= (b= BV X (X, - XF + X (e eV —2b, - BV T, (X, - X
since b, = f3, +Z(Xt _)_()et/Z(Xt —)7)2
=—(by - B, Zthl(Xt - )?)2 + Zthl(e’ -e)f

Take expectation on both sides to have

(57, 82)=—Elb, - ] 57, (6, - XF + B[S (e~ 2F
= —Var(bz) Zthl (Xt - )?)2 + E[Z;T:1 (et - E)Z]

. >3 (X, - XF +(1-1)0?

>, - X)
=(T—2)J2
Hence, E[ZT AZ/T 2] -

Given a value of the explanatory variable, X7.1, we would like to predict a value of the
dependent variable, Yr+1.  The least squares predictor is:

Yro =b +b0,X74.
The corresponding prediction error is defined as:
S =Yru—Yra=0b-5)+ (b= o) Xr+ers.

The least squares estimator of mean response, s 7+1, when X = Xry iS
Hri1=bi+by X7y

Its estimation error is given by
Hra—EQr) = - A1)+ (b = Bo) X741

- \2
Result 10: E(f)=0 and Var(f)—az[1+1+ (XT”_X_)ZJ.
r Zthl(Xt_X)

Proof:  E(f)=E(Yp,—Yr) =E(y) - B+ [Eb,) - o)X 7 + E(er,g) =0.

Var(f) = E\f?)= El(by ~ ) + (b — Bo) X711 + e71)?
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= |y - )2 + Elibs - )2 )20 + EleR o+ 2B - 502 - )X p

Notice that all the cross-product terms involving estimated parameters and er.; become zero
when expected values are taken, since (b — ;) and (b, — f,) are linear combinations of
ej,es,...,er, all of which are uncorrelated with ezs1.

Var(f) = Var(b,)+ X%+1Var(b2 )+ Var(er,q)+2X 7 ,,Cov(by, by)

i 2 2 v
=02 l_{_ X — J—i— XT+1 — +1+ _ZXXH_]__
[T S -xF) YL -xF YL X

2 1+£+X%+1;2XT+1)_£J;)?2}=02[1+£+ ()T(Tﬂ_)_(fz}' -
thl(Xt_X) Z[:l(Xt_X)

_ . S ) - of1 (xpa-XF
Result 11: E(,LlT+1—E(YT+1))—0 and Var(iiy,4)=0o [F+z?:&t)_()2}

Proof: Itis the same as the Result 10 except the random error term er;. =

Result12: Y7 (v, -7P=Y",( -7 + 37 (v, -7 f.

That is, SST = SSR + SSE.

Proof: (1, -7 = X005, 7, +7, -7 =307, -7)+ (-7 F
SN A I YAl A7) ) il A (A
DAY S Yl A7)

It is true because the cross-product term drops to zero:

zz;l();t _YXYt —YAZ): Zle(bl +b2Xt —Y)ét
= thzl (bl - Y)éz + thzlbthét

= (bl — Y)ZtT:lé, +b, ZthlXté, since thzlé, :ZleétX, =0
0.
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The Matrix Form of Simple Linear Regression Models

Consider the simple regression model with N observations

Y, =P+ Box, +¢,, n=12,...,.N (B1)
This can be written as
N 1 x &
J"z — 1 x.z [,51} + 5.2 (B2)
. . . ﬂ2 .
YN 1 xy €N
or
Y=XB+¢ (B3)
M1 1 x &
1
where Y =| 72 X=|. " B :{ﬂl} € = 8.2
: S 5o :
YN 1 xy &N
Assumptions of the linear Regression model:
1) Y=XB+e
E(z)] [0
@ E(&=1] : |=[i| =0
E(gN) 0
£(ef) 2
(91 E(glgN) o 0
@) E(eg)=| S I T ) PV
E(sye) - E(ejzv) 0 - o

(4) Xisan N x 2 matrix with det (X’ X) = 0.
(5) (Optional) &~ N(0, &°ly).

Under the assumptions discussed before, the best (minimum variance) linear unbiased
estimator (BLUE) of B is obtained by minimizing the error sum of squares

S(B) =g’e = (Y= XB)'(Y - XB) (B4)

This is known as the Gauss-Markov theorem.
Using the formulas for vector differentiation, we have
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BB _ _yxyraxxp. (B5)
op

Setting the equation (B6) to be zero gives the normal equation

(X'X)B =X'Y. (B6)
Since the square matrix (X' X) is non-singular, the OLS estimator /;’ IS

B = (X' X)Xy (B7)
Substituting equation (B3) into equation (B7), we get

B = (XX)XY = (XX IX(XB +€) = B+ (X'X)X'e
Since E(g) =0, we have E(,é)= L. Thus ,3 Is an unbiased estimator.  Also,

Var(8) = E(3-p)B-8) = (x'X) X" E(ss)X (X" X )™
=o*(X'X)" since E(eg')=0"1I,.

The A is unbiased and has a covariance matrix (X’ X)™.

According to equation (B7), the vectors of fitted values Y and the least squares
residuals £ are

Y =XB = X(X'X) XY = PyY (B8)

A~

£ =Y = Y=Y =PxY=(l-Py)Y = MyY (B9)

where Px = X(X'X)™X’ and Mx = (Iy— Px). Note that it can be shown that Px Px = Px and
Myx Mx = Mx (Px and Mx are called idempotent matrices).

The total variation of the dependent variable is the sum of squared deviations from its
mean (SST):

SST= V. (n-5 =Y'Y = ny’.

It can be shown that total sum of squares = regression sum of squares + error sum of
squares (SST = SSR + SSE), where

SSR = Y'PxY-np? = Y'X(X'X)X'Y=-n3? = BX'Y —ny?
SSE= Y'(Iy-P,)Y = YM,Y = YM\M,Y = §é
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The unbiased estimator of &?is
52 SSE _ EE _ Y'(Iy—Py )Y
N-2 N-=2 N-2
We now calculate elements of some matrices discussed above in order to verify some

results derived in earlier classes:

1 Xl
(X'X) = [1 1 - 1} 1 x| _ | N YVox,
X1 X9 o Xy . : Z’]Z\]:]-xn Ziv:lx’%
1 xy
(XX = 1 Ffflxs zslxn]
N
N anzlxg - (Z,]len)z = 2pet % N
Y1 N
(X/Y) — |:1 1 1 :| ) - Zn:]_yn
X1 X9 ot Xy Z;]1\/:1 x5,
YN

Base on the above results, we have

B = {/3’1} = (X'X)IXY
2
[~ N N N
- 1 anlx’% anx”][ anly" ]
N N
NZivzlxrzz —(Ziv:lxn)z T anlxn N Zn:]_xnyn
- 1 ziv:lxr% iv:lyn - anzlxn Zilenyn]
N N N
NZivzlx,zl —(Ziv:lxn)z L Nznzlxnyn _anlxnznzlyn

~

The covariance matrix of g is

Var(f) = o (X'X)" = o’ )2 [ijlxﬁ Zanxn]

- 2711\121xn N
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The Matrix Form of Multiple Linear Regression Models

Suppose that we have the following N observations:

n = B+ Poxip + Pz + 0+ Prxxix + &
Yo = B+ Boxpp + Paxpz + 0+ PrXox + &
yy = B+ Boxny + Paxgs + 0+ Prxyg t+ &y

The matrix form is

Y=Xf+¢
where
341 1 xp - xg B &
R S S Y
YN 1 xy2 - Xk Bk €N

The assumptions of the multiple linear Regression model are the same as the simple
linear regression model except X being an N x K matrix. Other matrix algebras are exactly
the same as the simple linear regression model
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