Quantitative Method Assignment 2

Due October 18, 2006

1. Consider
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} -13 \\ -1 \\ 2 \end{bmatrix}$, and $\mathbf{x}_4 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

- (a) Are x_1, x_2, x_3 linearly independent? If they are not, find a linear relationship among them.
- (b) Are x_1, x_2, x_4 linearly independent? If they are not, find a linear relationship among them.
- 2. Let the column vector $\mathbf{1}'_n = (1,1,\ldots,1) \in \Re^n$.
 - (a) Show rank $(\mathbf{1}_n(\mathbf{1}'_n\mathbf{1}_n)^{-1}\mathbf{1}'_n) = 1$.
 - (b) Verify $\mathbf{M}^{0}\mathbf{M}^{0} = \mathbf{M}^{0}$, where $\mathbf{M}^{0} = \mathbf{I} \mathbf{1}_{n}(\mathbf{1}'_{n}\mathbf{1}_{n})^{-1}\mathbf{1}'_{n}$.
- 3. Show that $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$ and $tr(a\mathbf{A}) = a \cdot tr(\mathbf{A})$.

4. Find the inverse of
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -2 & -1 \\ 0 & 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$
 if it exists.

5. Find the eigenvalues of the following matrices.

(a)
$$\mathbf{A} = \begin{bmatrix} 5 & 1 \\ 2 & 4 \end{bmatrix}$$

(b)
$$\mathbf{B} = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

1