Quantitative Method Assignment 4

Due November 7, 2006

- 1. Explain why
 - (a) $\mathbf{x}'\mathbf{A}\mathbf{x} = \mathbf{x}'\mathbf{A}'\mathbf{x}$, even when A is not symmetric.
 - (b) $\mathbf{x}'\mathbf{B}\mathbf{x} = \operatorname{tr}(\mathbf{B}\mathbf{x}x')$
- 2. Prove that if $tr(\mathbf{A}\mathbf{A}') = 0$, then $\mathbf{A} = \mathbf{0}$.
- 3. Show that (I + AA') is p.s., for real A.
- 4. Using $\mathbf{x}' = \begin{bmatrix} 1 & 3 & 5 & 7 & 9 \end{bmatrix}$, derive or state the numerical value of \mathbf{A} , \mathbf{B} , and \mathbf{C} such that
 - (a) $1^2 + 3^2 + 5^2 + 7^2 + 9^2 = \mathbf{x}' \mathbf{A} \mathbf{x}$;
 - (b) $(1+3+5+7+9)^2 = \mathbf{x}'\mathbf{B}\mathbf{x}$
 - (c) $(1-5)^2 + (3-5)^2 + (5-5)^2 + (7-5)^2 + (9-5)^2 = \mathbf{x'Cx}$