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Quantitative Method 
Assignment 5 

Due November 14, 2006 

1. Assume ( )nn MN I0y ,~1× , and A is symmetric and idempotent. 
(a) Show that if L is an m × n non-random matrix, then Ly  and Ayy′  are independent if 

LA = 0. 
(b) Show that if b is an n × 1 non-random vector and Ab = 0,  
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 where q = tr(A). 
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(a) Show that 
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(b) From the definition of t distribution (note that the random variable on the numerator is 
independent of that on the denominator) show why  
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(Hint:  ( )( ) ( )nMNµxσ I011 ,~1 − ) 
 
3. Assume ( )Σµy ,~1 Nn× .  Show that ( ) ( ) µAµAΣyAy ′+=′ trE . 

(Hint:  ( ) ( )[ ] ( )[ ]yAyyAyyAy ′=′=′ trtr EEE ) 


