1.

Quantitative Method

Assignment 5
Due November 14, 2006

Assume y,q ~ MN(0,1,,), and A is symmetric and idempotent.

(@) Show that if L is an m x n non-random matrix, then Ly and y'Ay are independent if
LA =0.

(b) Show that if b is an n x 1 non-random vector and Ab = 0,

then L /bb _ t, where g = tr(A).
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Let xq,x9,...,x, ~ N(u,0%); ie, X~MN(,ul,o In) where X:(xl,xz,...,xn) e R"
and 1=(11...1) e R".

(@) Show that
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(b) From the definition of ¢ distribution (note that the random variable on the numerator is
independent of that on the denominator) show why
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(Hint:  (Yo)(x1-u1)~MN(0,1,))

Assume y,,q ~ N(u,Z). Showthat E(y'Ay)=tr(AX)+p Ap.

(Hint:  E(y'Ay)=tr[E(y'Ay)]= E[tr(y'Ay)])



