Matrix Algebra

A matrix is a rectangular array (arrangement) of real numbers. The number of rows
and columns may very from one matrix to another, so we conveniently describe the size of a
matrix by giving its dimensions—that is, the number of its rows and columns. For example,
matrix A consisting of two rows and three columns is written as

A = 1 35
2x3 T 2 4 6 '
Denote a; and b; to be the scalar in the ith row and jth column of matrix A and B,
respectively. Matrices A and B are equal if and only if they have the same dimensions and
each element of A equals the corresponding element of B, i.e. a; = b;. The transpose of a
matrix A, denoted AT (or A'), is obtained by creating the matrix whose kth row is the kth
column of the original matrix. For example,
1 2
1 35 T
A= A" =3 4].
2 4 6
5 6

Suppose that A is an n x m matrix. If n equals m, then A is a square matrix. There

are several particular types of square matrices:

(1) Matrix A is symmetric if A = A"

(2) A diagonal matrix is a square matrix whose only nonzero elements appear on the main
diagonal, moving from upper left to lower right.

(3) Ascalar matrix is a diagonal matrix with same value in all diagonal elements.

(4) An identity matrix is a scalar matrix with ones on the diagonal. This is always
denoted I. A subscript is sometimes included to indicate its size, or order. For
example,

(5) A triangular matrix is one that has only zeros either above or below the main diagonal.
If the zeros are above the diagonal, the matrix is lower triangular.

Two matrices, say A and B, can be added only if they are of the same dimensions. The
sum of two matrices will be a matrix obtained by adding corresponding elements of matrices
A and B—that is, elements in corresponding positions; that is, if P = A + B, then p;; = a;; + b;;
forall ;and;.. Forexample,
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A |1 35 nd g [t 2 3
712 4 6 2710 -1 -2

142 3+2 5+3 }_{3 5 8}

P= A+B=
{2+0 4+(-1) 6+(-2) 2 3 4

The difference of matrices is carried out in a similar manner. For example, Q = A — B,
then g; = a;; — b;; for all i and ;.

For an m x n matrix A and scalar ¢, we define the product of ¢ and A, denoted cA, to be
the m x n matrix whose ith row and jth column is c ;. We could denote (-1) B by — B and
define the difference of A and B, denoted A — B, as A + (— B).

Let A be an m x n matrix and let B be an n x p matrix. We define the matrix product
of A and B to be the m x p matrix AB whose ith row and jth column is the dot product of ith
row of A and jth column of B. That is, the ith row and jth column of AB is

NN
apbyj+aby -t apb, =20 g ayby; .

1
1 3 5 I1x1+3x0+5%x1=6
Example: A, , = ,and Bs,;=(0|. Then AB,, = .
2 4 6 1 2x1+4x0+6%x1=8

Note that matrices can only be multiplied together if they are conformable. That is, we can
only form the matrix product AB if the number of column in A equals the number of rows in
B. Thus, although it is the case that in normal scalar algebra ab = ba, a similar property
does not normally hold for matrices. That is, in general, AB = BA.

The inverse of a square matrix A is defined as that matrix, written as A‘l, for which
ATA=AAT =L

Note that only square matrices have inverses and that the inverse matrix is also square,
otherwise it would be impossible to form both the matrix products AtAand AAY The
inverse matrix is analogous to the reciprocal of ordinary scalar algebra. In order to find AT
we first need to induce the concepts of determinants, minor, and cofactors.

All square matrices A have associated with them a scalar quantity (i.e. a number) known
as the determinant of the matrix and denoted either by det (A) or by |A|. | believe that you
can find the determinant of a 2 x 2 matrix without difficulties. Before we undertake the
evaluation of larger determinants, it is necessary to define the term “minor” and “cofactor.”
If the ith row and jth column of a square matrix A are deleted, we obtain the so-called
submatrix of the scalar ;. The determinant of this submatrix is known as its minor, and we
denoted it by m;.  All scalars in a matrix will obviously have minors.

The cofactor of any scalar in a matrix is closely related to the minor. The cofactor of
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the scalar a; in the matrix A is defined as
¢ = (1) my
where mj; is the corresponding minor. Thus, a cofactor is simply a minor with an
appropriate sign attached to it.
The determinant of a square matrix with order 3 (or higher order) can be obtained by
taking any row or column of scalars from the matrix, multiply each scalar by its respective

cofactor, and sum the resultant products. For example, to find the determinant of the matrix
A with order 3, we could expand using the first row. This could give

det (A) = a1 c11 + a1z c12 + a1z 13 = a1 M1 — a2 Mz + aiz Mmis.

Notice that whether we expand by the first row or the second column, we obtain the same
value for the determinant.

Some properties of determinants:
1. Let A be an upper (or lower) triangular matrix, then the determinant of A is the product
of its diagonal entries.
If A is diagonal matrix, then its determinant is the product of its diagonal entries.
If two rows of a square matrix A are the same, det (A) = 0.
Let A and B be square matrices with the same order. Then det (AB) = det (A) det (B).
For any nonzero scalar « and a square matrix A with order #, det (aA) = " det (A).
Let A be a square matrix. Then A is invertible if and only if det (A) = 0.
If a square matrix A is invertible, then det (A_l) =1/det (A).
det (A1) = det (A).

N o g~ wd

Ay 0
9. Let A;and A; be square matrices, we have det{ 01 A } = det (A1) det (A,).
2

All A12 -1 -1
21 22

Let A be the square matrix with order n. The adjoint of A is obtained by replacing
each scalar a;; by its cofactor c;;, and then transposing it. That is,

€1 €1 " G

. €1 €2 =t Gy
adj(A) =| . o "l

Cltn Con 0 Cyp

Suppose that det (A) = 0. The inverse matrix A" can be shown to be
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€11 €21 " Cm
_1=;adj(A):L G2 €22 v Cna|
det(A) det(A)

Cln Con " Cyp

Notice that the above equation is valid only if det (A) = 0. If det (A) =0, then the matrix A
is said to be singular and doe not have an inverse. Furthermore, A_l, if it exists, is unique.

12 3
Example: A=|1 0 1 |. Itsdeterminantand adjoint matrix is, respectively,
11 -1
12 T ris 2
det(A)=6 and adj(A)=|5 -4 1| =2 -4 2
2 2 -2 1 1 -2

SR A

Some properties of the inverse:

For any nonsingular matrices A and B, (AB) *=B A",
If a square matrix A is invertible, then det (A_l) =1/det (A).

For any nonzero scalar a and nonsingular matrix A, (¢ A) ™" = lz;ﬂlA*l .
[ i

For any nonsingular matrix A, (AT = (A ™).

-1
. . A 0 1
For any nonsingular matrices A and A ,, 1 = Ag 01
0 A 0 A5
Given Ax = b, for any nonsingular matrix A, and two column vectors x and b, then can
solvex=A""b.

The Trace of a Matrix

The trace tr(A) of a square matrix A is the sum of all diagonal elements.

tr(A") = tr(A).

tr(scalar) = tr(scalar).

Let A and B be square matrices with the same order.  tr(A + B)=tr(A) + tr(B).
For any nxk matrix A and kxn matrix B, tr(AB)= tr(BA).

For any scalar « and square matrix A, tr(aA)= a-tr(A).

For conformable matrices A, B, C, and D, tr(ABCD) = tr(DABC) = tr(CDAB)
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The Summation Vector

Denote 1, as an n-dimensional column vector with all elements 1, called the
summation vector because it helps sum the elements of another vector x in a vector
multiplication as follows:

X1

U'x=f 1 - 1] x.2 =x1+x2+...+xn=ixi.
: i=1

X n

Note that the result is a scalar, i.e., a single number.
The summation vector can be used to construct some interesting matrices as follows:

1. Since 1,1, =n and (1,1,)" =1/n, we have
4 1
(1,1, 1,x ==Y x,
ni=1

which is the average of the elements of the vector x and is usually denoted as x .

2. We can “expand” the scalar x toavector of x by simply multiplying it with 1, as
follows:

Rl

1 12
ln(l;zln) l;lx = _in ln :f'ln =
nj=1
x
3. By subtracting the above vector of the average from the original vector x, we get the
following vector of deviations:

xl—)_c
-1, x =x-%1, = 2= (1, -1,(11,) 11 = M%
X, —X

where M% =1, —1,(1,1,)*1, is a square matrices with order n. The diagonal elements
of M? areall (1-1/) and its off-diagonal elements are all —1/n. Some useful results:
1. M1, =q,-1,(,1,) )1, =1, -1,(1,1,) 1,1, =0. Hence, 'M°=0". The
sum of deviation about the mean is then ", (x; —X) =1, M%x)=1,0=0.
2. The sum of squared deviations about the mean is
> (- )_c)2 = (x - x1, )’ (x-x1,)= (Mox)! (Mox): xMM% = x'M %

since M° is symmetricand M°M° =M°.
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Idempotent Matrix

An idempotent matrix, P, is one that is equal to its square, that is, P>= PP =P. It can
be verified that if P is idempotent, then (I-P) is also an idempotent matrix. If P is a

symmetric idempotent matrix (all of the idempotent matrices we shall encounter are
symmetric), then P'P=P. Thus, M° IS a symmetric idempotent matrix.

Consider constructing a matrix of sums of squares and cross products in deviations from
the column means.  For two vectors x and y,

S (=X (i - 7) = (M%)’ (M%) =x'MPy .
tence, | Sia(i—? ElLiln -0, - y)] _ {X'Mox x'MOy}
S = —F) X (v - P) yM%  yMP%

Rank

A set of vectors {x;,X,,...,x, Jare said to be linearly independent if the following

equality holds

Xy + 09Xyt +oyx, =0
only when a3 =a,=---a;, =0. It is easy to see that no vector in a set of linearly
independent vectors can be expressed as a linear combination of the other vectors.

X110 X2t Mk

: _| X1 X222 vt X2k
Given X, =[xix2.... xJ=| . - N

Xl Xp2 0 Xk

if among the & columns x; of X only ¢ are linearly independent, then we say the column rank
of X is ¢. If all £ columns x; of X are linearly independent, then we say X has full column
rank. The row rank of X can be defined similarly. The smaller of the column rank and the
row rank of X is referred to as the rank of X and denoted as rank(X). Given that k£ <n, i.e.,
X has more rows than columns, then rank(X) = & if X has full column rank. The implication
of full column rank is that if X is not of full column rank, rank(X) < k, then at least one of its
column is a linear combination of the other £ — 1 columns.

Some properties:

1.  Rank(A,,)<min{n, k}: The rank of a matrix cannot exceed its numbers of rows and

nxk

columns.

2. When Rank(A,., )=n, A isnonsingular, i.e., A exists.
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When Rank(A,.,)<n,then A is singular and A does not exist.

nxn

Rank(AB) < min{Rank(A), Rank(B)}

If B is a square matrix with full rank, Rank(AB) = Rank(A).

I

Rank(X'X) = Rank(XX') = Rank(X).

Eigenvalues and Eigenvectors of Symmetric Matrices

A useful set of results fro analyzing a square matrix A arises from the solutions to the set
of equations
Au=/u.
The pairs of solutions are the eigenvectors u and eigenvalues A. If u is any solution vector,
then ku is also for any value of &. To remove the indeterminacy, u is normalized so that
u'u=1. The solution then consists of A and (» — 1) unknown elements in u.
The above set of equations can be rewritten as:
(A=A u=0.
If (A — AI) is nonsingular, the only solution isu =0. Hence, the condition for u and A exist
(other than u = 0) is that (A — AI) is nonsingular. Hence, if A is a solution, then
det(A - AI) =0
This equation is called the characteristic equation of A. For a symmetric matrix A of order
n, its characteristic equation is an nth-order polynomial in . There are = real roots to be
denoted A4, Ay,..., 4,, Some of which may be zero. Corresponding to each /; is a vector u;
satisfying the following equation:
Au,=An; for i=1,2,..., n
Note that for symmetric matrix, eigenvectors u;’s are distinct (the corresponding eigenvalues

A ;’s, although real, may not be distinct) and orthogonal, i.e., wu; =0 for i = j It is

convenient to collect the n-eigenvectors in a nxn matrix whose ith column is the w;
corresponding A,
U=[ul u, - un]’

and the n-eigenvalues in the same order, in a diagonal matrix,

4 0 - 0
0 A4, - 0
0 0 - A

Then, the full set of equations
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Au,~ =1 W
is contained in
AU =UA.

Since eigenvectors are orthogonal wju, =0 fori=;and normalized wju, =1, we have
uvU-=1I.

This implies that U'=U"". It can be shown that A = UAU' =37 Lu;u; (spectral
decomposition of a matrix A) and U'AU = A (diagonalization of a matrix A).

5 -3 . .
Example: A:{ 3 5}. Its characteristic equation is

5-1 -3
da{ }zw-zf—gzo.
-3 5-1

Hence, we have 4, =2 and 4, =8; u; =

1 197 =L 147
ﬁ’ﬁ] and u2_[ﬁ’ﬁ] :

Some properties:

1. det(A) = det(UAU’) = det(U) det(A) det(U") = det(A) = [T, 4 -

tr(A) = tr(UAU') = tr(AU'U) = tr(A) = 37, 4 .
Since U is nonsingular, rank(A) = rank (UAU’) = rank(A ), the rank of A is equal to the
number of nonzero eigenvalues.
4. The eigenvalues of a nonsingular matrix are all nonzero.
5. Let A be an eigenvalue of A.
(1) When A is singular, A" is an eigenvalue of A* for positive integer .

A2u=Adu = JAu=1u)=u = Afu=71u

(2) When A is nonsingular, A* is an eigenvalue of A* for integer &; especially, if A is
nonsingular with eigenvalue A, the inverse A! has 21 asan eigenvalue.

Au=u = u=A" lu=1A"u.

Note that A° =T.
(3) Forascalara, atis an eigenvalue of aA (aAu =aiu).
6. The eigenvectors of A and A” are the same.
7. The eigenvalues of an idempotent matrix are either O or 1.
(1) The only full rank, symmetric idempotent matrix is the identity matrix I.
(2) All symmetric idempotent matrices except the identity matrix are singular.

8. The rank of an idempotent matrix is equal to its trace.
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Quadratic Forms and Definite Matrices

Many optimization problems involve double sums of the form

q= Z:lzlzij':laijxixj '

This quadratic form can be written as:

q =x'Ax,

where A =[g;],,, isasymmetric matrix with order » and x e R". In general, g may be
positive or negative, depending on A and x. However, there are some matrices for which ¢
will be positive (or negative) regardless of x.

A w b e

N o g~ wDh P

10.

11.

12.

A symmetric matrix A with order » is:
Positive definite (p.d.) if x’Ax >0 forall x eR", except x = 0;
Negative definite (n.d.) if x’Ax<0 forall x eR", except x # 0;
Positive semi-definite (p.s.d.) if xX’Ax>0 forall x e R";
Negative semi-definite (n.s.d.) if x’Ax<0 forall x e R".

Some properties:

The eigenvalues of a p.d. (n.d.) matrix are all positive (negative).

The eigenvalues of a p.s.d. (n.s.d.) matrix are all positive or zero (negative or zero).

If Aisp.d. (p.s.d.), then det(A) > (>) 0.

If Aisn.d. (n.s.d.), then det(A) < (<) 0 for odd order and det(A) > (=) O for even order.
If Aisp.d. (n.d.),sois A™.

The identity matrix I is p.d.

When A is p.d., A* is an eigenvalue of A* for any real number k. Especially,
AY2 = UAY?U" and AY2AY?=A . Note that the eigenvalues of AY? are the
square roots of the eigenvalues of A.

If A is n x K with full column rank and n» > K, then A’A isp.d.and AA' isp.s.d.

Since Ax=0 forall x =0, x'A'Ax = (Ax)'Ax=y'y = Zi]ilyiz >0.
Every idempotent matrix is p.s.d.

If A is symmetric and idempotent, n x n with rank J, then every quadratic form in A can

be written as x'Ax =37 »?
Suppose that both A and B have the same dimensions. We say that A is larger than B
(A > B) if A — B is positive definite.
d = x'Ax — x'Bx = x'(A - B)x
If A>B,thenB*>A".
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Moments of Random Vectors

Definition: Let y be an » x 1 random vector.
(1) The expected value of y, denoted E(p), is the vector of expected values:

E(y) = [EG). EGo)s o EG)]

(2) Its variance-covariance matrix, denoted Var(y), is defined as

2
01 O12 " Oy
2
U U e O'
Var(y)=| "2t "2 T
2
Ouy1 Op2 v Oy

where O'JZ- =Var(y;) and o; =Cov(y;, y;). Itisobvious that a variance-covariance

matrix is symmetric.
Properties: Let A be an m x n nonrandom matrix and a be an n x 1 nonrandom vector.
(1) E(Ay +a)=AEQy) +a.
(2) Var(a'y)=a'Var(y)a>0.
(3) If Var(a'y)>0 forall a=0, Var(y) is positive definite.
(4) Var(y) = E[(y —n)(y —n)'], where p = E(y).
(5) If the elements are uncorrelated, o; =0 for i = j, Var(y) is a diagonal matrix. If, in
addition, Var(y;)= o’ forj=1,2,..., n, then Var(y)= ozln .

(6) Var(Ay +a) = A[Var(y)]A’.
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Distribution of Quadratic Forms

Let y be an » x 1 multivariate normal random vector with mean p and
variance-covariance matrix Z, writtenas 'y ~ N(u, ).

Properties: Let A and B be square matrices with order », and b be an n x 1 vector.

(1) Each element of y is normally distributed.

(2) Any two elements of y, y; and y;, are independent if and only if they are
uncorrelated, thatis, o; =0.

(3) Ay+b~N(Ap+b, AZA).

(4) If p=0 and =1, then y'y~ 2.

6) If y~N@Ez) 2V (y-n-~N01,)
®) If y~NE), (y-wE (y-m -~z
(7) If y~N(0,1,) and A is symmetric idempotent, then y'Ay ~ Zqz where g = tr(A).
8) If y~nN(0,1,) then yM%y ~ 42 4.
(9) If y~N(0,1,) and A and B are symmetric idempotent, then y’Ay and y'By are
independent if AB = 0.
(10) If y~ N( ) A and B are symmetric idempotent, and AB = 0, then
Y Pl
Y'By/1,

where 7, =tr(A) and r, =tr(B).
1) If y~ N(O, In), A is symmetric idempotent, and L be an m x n matrix, then Ly and

y'Ay are independent if LA = 0.
by/\bb _

(12) If y~N(0,1,) and Ab =0, ,
Y'Ay/q

g Where g =tr(A).

Wimry
VyMOy/(n-1)

(13) If y~N(0,1,),
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Differential Operators

This section consider three kinds of differential calculus: Scalar, vectors, and quadratic
forms.

1. Scalars: a;—X:a. The symbol ai represent a whole vector of differential

X X

operators.
N og oax ox’ ;
Example: ¢=3x +4x, +9x3=[3 4 9]|x,|=a'x. 9 _AX_EA_a=|4].
ox  0x ox
X3 9

2. Vectors: aXA:A aAX:A’.

ox ox

Give

y=D1 o - yl=lxa xa, - xa,]=xA

where the ith element of y is y, =x'a; for a; being the ith column of A, withi=1,..., n.
ﬁ: % 6)/_2 ay" = 6X31 axaz axan :[al a, - an]:A.
ox ox 0Ox ox ox ox ox

2 6 -1fx 2x1 + 6xy — X3
Example: Ax=|3 -2 4 ||x,|=|3x;—2x, +4x3| gives

3 4 7 X3 3X1+4X2 +7X3

2 3 3
OAX | 0(2xy +6xy —x3) 0(3x; —2xp +4x3) O(3xy +4xy +7x3) | 6 _2 4l_a’
ox ox ox ox
-1 4 7

ox'Ax _ ox'P N oQx

3.  Quadratic forms:
19). ox ox

,where P = Ax and Q = x'A; hence,

aXaAX =P+Q'=Ax+A'x. Furthermore, if A is symmetrical, then 8X8AX = 2Ax.
X X
_x1
Example: ¢=[x; x, x3]|3 4 7|[x,|= x12 + 6x7x5 +10xx3 + 4x§ +14x5x5 + 9x§ ,
5 7 9 X3

0q/ox; | | 2x;+6xy +10x3
—~L =|0q/dxy |=| 6x1+8xy +14x;3 |=2AX.
dq/dx3 | |10xy +14x, +18x3
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The Matrix Form of Simple Linear Regression Models

Consider the simple regression model with N observations

Y, =P+ Box, +¢,, n=12,...,.N (B1)
This can be written as
N 1 x &
2= |t [ﬂf} |7 82)
: | B :
YN 1 xy €N
or
Y=XB+¢ (B3)
341 1 x &
1
where Y =| 72 X= | 2 B :{ﬂl} € = 8.2
: N 5o :
YN 1 xy EN
Assumptions of the linear Regression model:
1 Y=XB+¢
E(z)] [0
2 E(e) = o=l =0
E(gN) 0
£(ef) 2
(91 E(glgN) o 0
) E(eg)=| o=l = Ay
E(sye) - E(ejzv) 0 - o

(4) X isan N x 2 matrix with det (X’ X) = 0.
(5) (Optional) &~ N(0, o°1y).

Under the assumptions discussed before, the best (minimum variance) linear unbiased
estimator (BLUE) of B is obtained by minimizing the error sum of squares

S(P) = &'e = (Y - XB)'(Y - XB) (B4)

This is known as the Gauss-Markov theorem.
Using the formulas for vector differentiation, we have
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BB _ _Hxyr2xx8. (B5)
op

Setting the equation (B6) to be zero gives the normal equation

X'X)p =X'Y. (B6)
Since the square matrix (X' X) is non-singular, the OLS estimator /;’ IS
B = (X'X)'X'Y (B7)
Substituting equation (B3) into equation (B7), we get

B = (X'X)'X'Y = (X'X)'X(XB+e) =B+ (X'X)'Xe
Since E(g) =0, we have E(ﬁ)= L. Thus ,3 IS an unbiased estimator.  Also,

Var(ﬁ) = E(/}'ﬂXﬁ'ﬂ)' =(X'X)_lX'E(&e’)X(X’X)‘1
:o'z(X'X)_1 since E(gg')=o-21N,

The A is unbiased and has a covariance matrix (X’ X)™.

According to equation (B7), the vectors of fitted values ¥ and the least squares
residuals & are

Y =Xp =X(X'X)'X'Y=PyY (B?)

£ =Y- Y=Y-PxY=(I-Py)Y=MyY (BS)

where Px = X(X'X)™X’ and Mx = (Iy - Px). Note that it can be shown that Px Px = Px and
Mx Mx = Mx (Px and Mx are called idempotent matrices).

The total variation of the dependent variable is the sum of squared deviations from its
mean (SST):

2 _
SST= Y. (»-7) =Y Y- ny.

It can be shown that total sum of squares = regression sum of squares + error sum of
squares (SST = SSR + SSE), where

SSR = Y'PxY-n3? = Y'X(X'X)X'Y-13% = BX'Y —ny?
SSE= Y'(I,-P,)Y = YM,Y = YM\ MY = §%

B-14



The unbiased estimator of o2 is
52 SSE _ E¢ _ Y'(Iy—Py )Y
N-2 N-=2 N-2
We now calculate elements of some matrices discussed above in order to verify some

results derived in earlier classes:

1 Xl
(X'X) = [1 1 .. 1} 1 x| _ [ N folxn]
X1 Xy ot Xy . . Z’]Z\]:]-xn Ziv:lxs
1 xy
(x'X)? = 1 {zm zylxn]
N
N anzl X, - (Z,iv:l xn)z = 2pt % N
V1 N
(X/Y)= |:l 1 1:| Y2 — anl)’n
X1 X9 o Xy Z’]Z\/:]- X7,
YN

Base on the above results, we have

B = {{ﬂ = (X'X)X'Y

2

1 | anzlxg Zi\[lxn] [ ZnN:1yn ]

N N
Nzivzlxrzt B (Ziv:lxn)z L 21" N DINRE
- 1 Zivzlx,f ff:lyn - anzlxn Zilenyn]
N N N
NZiv:]_ert _(Z,],v:]_xn)z L Nzn:1xnyn _Zn:]_xnzn:]_yn

~

The covariance matrix of g is

2 N o2 NN
Var(ﬁ)= O'Z(X'X)_l = o )2 [anxn anl n]

- Z,]Z\/:1xn N
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The Matrix Form of Multiple Linear Regression Models

Suppose that we have the following N observations:

n = B+ Poxip + Pz + 0+ Prxxix + &
Yo = B+ Poxpp + Paxpz + 0+ Py + &
yy = B+ Boxnyg + Paxgs + 0+ Prxyg t+ &y

The matrix form is

Y=Xp+¢
where
V1 1 xp - xg B &
) Y2 X - 1 xpp - xp ,B _ B c - &2
YN 1 xy2 - Xk B EN

The assumptions of the multiple linear Regression model are the same as the simple
linear regression model except X being an N x K matrix. Other matrix algebras are exactly
the same as the simple linear regression model

B-16



