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Matrix Algebra 
 A matrix is a rectangular array (arrangement) of real numbers.  The number of rows 
and columns may very from one matrix to another, so we conveniently describe the size of a 
matrix by giving its dimensions⎯that is, the number of its rows and columns.  For example, 
matrix A consisting of two rows and three columns is written as 

⎥
⎦

⎤
⎢
⎣

⎡
=× 642

531
32A . 

Denote aij and bij to be the scalar in the ith row and jth column of matrix A and B, 
respectively.  Matrices A and B are equal if and only if they have the same dimensions and 
each element of A equals the corresponding element of B, i.e. aij = bij.  The transpose of a 
matrix A, denoted AT (or A′ ), is obtained by creating the matrix whose kth row is the kth 
column of the original matrix. For example, 

⎥
⎦

⎤
⎢
⎣

⎡
=

642
531

A   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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Suppose that A is an n × m matrix.  If n equals m, then A is a square matrix.  There 
are several particular types of square matrices: 
(1) Matrix A is symmetric if A = AT. 
(2) A diagonal matrix is a square matrix whose only nonzero elements appear on the main 

diagonal, moving from upper left to lower right. 
(3) A scalar matrix is a diagonal matrix with same value in all diagonal elements. 
(4) An identity matrix is a scalar matrix with ones on the diagonal.  This is always 

denoted I.  A subscript is sometimes included to indicate its size, or order.  For 
example, 
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(5) A triangular matrix is one that has only zeros either above or below the main diagonal.  
If the zeros are above the diagonal, the matrix is lower triangular. 

 Two matrices, say A and B, can be added only if they are of the same dimensions.  The 
sum of two matrices will be a matrix obtained by adding corresponding elements of matrices 
A and B⎯that is, elements in corresponding positions; that is, if P = A + B, then pij = aij + bij 
for all i and j..  For example, 
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⎥
⎦

⎤
⎢
⎣

⎡
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⎢
⎣
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 The difference of matrices is carried out in a similar manner.  For example, Q = A − B, 
then qij = aij − bij for all i and j. 
 For an m × n matrix A and scalar c, we define the product of c and A, denoted cA, to be 
the m × n matrix whose ith row and jth column is c aij.  We could denote (−1) B by − B and 
define the difference of A and B, denoted A − B, as A + (− B). 

Let A be an m × n matrix and let B be an n × p matrix.  We define the matrix product 
of A and B to be the m × p matrix AB whose ith row and jth column is the dot product of ith 
row of A and jth column of B.  That is, the ith row and jth column of AB is 

∑ ==+++ n
k kjiknjinjiji babababa 12211 " . 

Example:  ⎥
⎦

⎤
⎢
⎣

⎡
=× 642

531
32A , and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×

1
0
1

13B .  Then ⎥
⎦

⎤
⎢
⎣

⎡
=×+×+×
=×+×+×

=× 8160412
6150311

12AB . 

Note that matrices can only be multiplied together if they are conformable.  That is, we can 
only form the matrix product AB if the number of column in A equals the number of rows in 
B.  Thus, although it is the case that in normal scalar algebra ab = ba, a similar property 
does not normally hold for matrices.  That is, in general, AB ≠ BA.  

 The inverse of a square matrix A is defined as that matrix, written as A−1, for which 

A−1 A = A A−1 = I. 

Note that only square matrices have inverses and that the inverse matrix is also square, 
otherwise it would be impossible to form both the matrix products A−1 A and A A−1.  The 
inverse matrix is analogous to the reciprocal of ordinary scalar algebra.  In order to find A−1, 
we first need to induce the concepts of determinants, minor, and cofactors. 
 All square matrices A have associated with them a scalar quantity (i.e. a number) known 
as the determinant of the matrix and denoted either by det (A) or by |A|.  I believe that you 
can find the determinant of a 2 × 2 matrix without difficulties.  Before we undertake the 
evaluation of larger determinants, it is necessary to define the term “minor” and “cofactor.”  
If the ith row and jth column of a square matrix A are deleted, we obtain the so-called 
submatrix of the scalar aij.  The determinant of this submatrix is known as its minor, and we 
denoted it by mij.  All scalars in a matrix will obviously have minors. 
 The cofactor of any scalar in a matrix is closely related to the minor.  The cofactor of 
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the scalar aij in the matrix A is defined as  

cij = (−1)i + j mij 

where mij is the corresponding minor.  Thus, a cofactor is simply a minor with an 
appropriate sign attached to it. 

The determinant of a square matrix with order 3 (or higher order) can be obtained by 
taking any row or column of scalars from the matrix, multiply each scalar by its respective 
cofactor, and sum the resultant products.  For example, to find the determinant of the matrix 
A with order 3, we could expand using the first row.  This could give 

det (A) = a11 c11 + a12 c12 + a13 c13 = a11 m11 − a12 m12 + a13 m13. 

Notice that whether we expand by the first row or the second column, we obtain the same 
value for the determinant. 

 Some properties of determinants: 
1. Let A be an upper (or lower) triangular matrix, then the determinant of A is the product 

of its diagonal entries. 
2. If A is diagonal matrix, then its determinant is the product of its diagonal entries. 
3. If two rows of a square matrix A are the same, det (A) = 0. 
4. Let A and B be square matrices with the same order.  Then det (AB) = det (A) det (B). 
5. For any nonzero scalar a and a square matrix A with order n, det (aA) = an det (A). 
6. Let A be a square matrix.  Then A is invertible if and only if det (A) ≠ 0. 
7. If a square matrix A is invertible, then det (A−1) = 1 / det (A). 
8. det (AT) = det (A). 

9. Let A1 and A2 be square matrices, we have =⎥
⎦

⎤
⎢
⎣

⎡

2

1det
A0
0A

 det (A1) det (A2). 

10. )det()det()det()det(det 12
1

1121221121
1
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1211 AAAAAAAAAA
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AA -- −=−=⎥

⎦

⎤
⎢
⎣

⎡ . 

 
Let A be the square matrix with order n.  The adjoint of A is obtained by replacing 

each scalar aij by its cofactor cij, and then transposing it.  That is, 
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⎥
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Suppose that det (A) ≠ 0.  The inverse matrix A−1 can be shown to be 
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⎥
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⎥
⎥
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⎣

⎡
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A
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Notice that the above equation is valid only if det (A) ≠ 0.  If det (A) = 0, then the matrix A 
is said to be singular and doe not have an inverse.  Furthermore, A−1, if it exists, is unique. 

Example:  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡

−
=
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A .  Its determinant and adjoint matrix is, respectively, 

6)(det =A  and 
⎥
⎥
⎥
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⎢
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⎥
⎥
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⎢
⎢
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−
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(A) adj . 

 
 Some properties of the inverse: 
1.  For any nonsingular matrices A and B, (AB) 1− =B 1− A 1− . 
2.  If a square matrix A is invertible, then det (A−1) = 1 / det (A). 

3.  For any nonzero scalar a and nonsingular matrix A, ( a A) 1−  = ∑ =
−n

ia 1
11 A . 

4.  For any nonsingular matrix A, (AT) 1− = (A 1− )T. 

5.  For any nonsingular matrices A 1 and A 2 , 
1

2

1
−

⎥
⎦

⎤
⎢
⎣

⎡
A0
0A

= ⎥
⎦

⎤
⎢
⎣

⎡
1

2

1
1

-

-

A0
0A  

6.  Given Ax = b, for any nonsingular matrix A, and two column vectors x and b, then can 
solve x = A 1− b. 

 

The Trace of a Matrix 

The trace tr(A) of a square matrix A is the sum of all diagonal elements. 
1. tr(AT) = tr(A). 
2. tr(scalar) = tr(scalar). 
3. Let A and B be square matrices with the same order.  tr(A + B)= tr(A) + tr(B). 
4. For any n×k matrix A and k×n matrix B, tr(AB)= tr(BA). 
5. For any scalar a and square matrix A, tr(aA)= a⋅tr(A). 
6. For conformable matrices A, B, C, and D, tr(ABCD) = tr(DABC) = tr(CDAB) 
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The Summation Vector 

Denote n1  as an n-dimensional column vector with all elements 1, called the 
summation vector because it helps sum the elements of another vector x in a vector 
multiplication as follows: 

[ ] ∑
=

=+++=
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Note that the result is a scalar, i.e., a single number. 
The summation vector can be used to construct some interesting matrices as follows: 

1.  Since nnn =′ 11  and ( ) nnn 11 =′ −11 , we have 

( ) x111 nnn ′′ −1 ∑
=

=
n

i
ix

n 1

1 , 

which is the average of the elements of the vector x and is usually denoted as x . 
2.  We can “expand” the scalar x  to a vector of x  by simply multiplying it with n1  as 

follows: 

( ) x1111 nnnn ′′ −1  n
n

i
ix

n
1⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=1

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⋅=

x

x
x

x n #
1 . 

3.  By subtracting the above vector of the average from the original vector x, we get the 
following vector of deviations: 

( ) x1111-x nnnn ′′ −1  =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=⋅−=

xx

xx
xx

x

n

n #
2

1

1x ( )( ) xMx1111I 01 =′′− −
nnnnn  

where ( ) nnnnn 1111IM ′′−= −10  is a square matrices with order n.  The diagonal elements 

of 0M  are all ( )n11−  and its off-diagonal elements are all n1− .  Some useful results: 

1.  ( ) ( ) 011111111111I1M =′′−=′′−= −−
nnnnnnnnnnnnn

110 )( .  Hence, 0M1 ′=′ 0
n .  The 

sum of deviation about the mean is then 0()( 0
1 =′=′=−∑ = 01x)M1 nn

n
i i xx . 

2.  The sum of squared deviations about the mean is 

( ) ( ) ( ) ( ) ( ) xMxxMMxxMxM1-x1-x 000002
1 ′=′=

′
=′=− ′

=∑ nn
n
i i xxxx  

since 0M  is symmetric and 000 MMM = . 
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Idempotent Matrix 

 An idempotent matrix, P, is one that is equal to its square, that is, P2 = PP = P.  It can 
be verified that if P is idempotent, then )( PI −  is also an idempotent matrix.  If P is a 
symmetric idempotent matrix (all of the idempotent matrices we shall encounter are 

symmetric), then PPP =′ .  Thus, 0M  is a symmetric idempotent matrix. 

 Consider constructing a matrix of sums of squares and cross products in deviations from 
the column means.  For two vectors x and y, 

yMxyMxM 0
1

00 )()())(( ′=′=−−∑ =
n
i ii yyxx . 

Hence, ⎥
⎦

⎤
⎢
⎣

⎡

′′
′′

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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∑∑
∑∑
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n
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n
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n
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n
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yyxxyy
yyxxxx

 

 
Rank 

A set of vectors { }kxxx ,...,, 21 are said to be linearly independent if the following 
equality holds 

0xxx =+++ kkααα "2211  
only when 021 === kααα " .  It is easy to see that no vector in a set of linearly 
independent vectors can be expressed as a linear combination of the other vectors. 

Given =×knX [x1 x2 …. xk]=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nknn

k

k

xxx

xxx
xxx

"
#%##

"
"

21

22221

11211

, 

if among the k columns xj of X only c are linearly independent, then we say the column rank 
of X is c.  If all k columns xj of X are linearly independent, then we say X has full column 
rank.  The row rank of X can be defined similarly.  The smaller of the column rank and the 
row rank of X is referred to as the rank of X and denoted as rank(X).  Given that k < n, i.e., 
X has more rows than columns, then rank(X) = k if X has full column rank.  The implication 
of full column rank is that if X is not of full column rank, rank(X) < k, then at least one of its 
column is a linear combination of the other k − 1 columns. 

Some properties: 

1. },min{(Rank knkn ≤× )A :  The rank of a matrix cannot exceed its numbers of rows and 

columns. 

2. When nnn =× )(Rank A , A is nonsingular, i.e., A−1 exists. 
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3. When nnn <× )(Rank A , then A is singular and A−1 does not exist. 

4. Rank(AB) ≤ min{Rank(A), Rank(B)} 

5. If B is a square matrix with full rank, Rank(AB) = Rank(A). 

6. )(Rank)(Rank)(Rank XXXXX =′=′ . 

 

Eigenvalues and Eigenvectors of Symmetric Matrices 

A useful set of results fro analyzing a square matrix A arises from the solutions to the set 
of equations 

Au =λ u. 
The pairs of solutions are the eigenvectors u and eigenvalues λ.  If u is any solution vector, 
then ku is also for any value of k.  To remove the indeterminacy, u is normalized so that 

1=′uu .  The solution then consists of λ and (n − 1) unknown elements in u.   
 The above set of equations can be rewritten as: 

(A − λI) u = 0. 
If (A − λI) is nonsingular, the only solution is u = 0.  Hence, the condition for u and λ exist 
(other than u = 0) is that (A − λI) is nonsingular.  Hence, if λ is a solution, then 

det(A − λI) = 0 
This equation is called the characteristic equation of A.  For a symmetric matrix A of order 
n, its characteristic equation is an nth-order polynomial in λ.  There are n real roots to be 
denoted λ1, λ2,…, λn, some of which may be zero.  Corresponding to each λi is a vector ui 
satisfying the following equation: 

Aui =λ iui   for   i = 1, 2,…, n. 
Note that for symmetric matrix, eigenvectors ui’s are distinct (the corresponding eigenvalues 

λ i’s, although real, may not be distinct) and orthogonal, i.e., 0=′ jiuu  for i ≠ j.  It is 

convenient to collect the n-eigenvectors in a n×n matrix whose ith column is the ui 
corresponding λ i, 

[ ]nuuuU "21= , 
and the n-eigenvalues in the same order, in a diagonal matrix, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nλ

λ
λ

"
#%##

"
"

00

00
00

2

1

Λ . 

Then, the full set of equations 
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Aui =λ iui 
is contained in 

Λ= UAU . 

Since eigenvectors are orthogonal 0=′ jiuu  for i ≠ j and normalized 1=′ iiuu , we have 
IUU =′ . 

This implies that 1−=′ UU .  It can be shown that ∑ = ′=′= n
i iii1 uuUUΛA λ  (spectral 

decomposition of a matrix A) and ΛAUU =′  (diagonalization of a matrix A). 

Example:  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

53
35

A .  Its characteristic equation is 

09)5(
53

35
det 2 =−−=⎥

⎦

⎤
⎢
⎣

⎡
−−
−−

λ
λ

λ
. 

Hence, we have 21 =λ  and 82 =λ ; T],[
2

1
2

1
1 =u and T],[

2
1

2
1

2
−=u . 

Some properties: 

1. ∏===′=′= n
i i1)det()det()det()det()det()det( λΛUΛUUUΛA . 

2. tr(A) = tr ( ) ( ) ( ) ∑ ===′=′ n
i i1trtr λΛUUΛUUΛ . 

3. Since U is nonsingular, rank(A) = rank ( ) ( )ΛUUΛ rank=′ , the rank of A is equal to the 
number of nonzero eigenvalues. 

4. The eigenvalues of a nonsingular matrix are all nonzero. 
5. Let λ be an eigenvalue of A. 

(1) When A is singular, λk is an eigenvalue of Ak for positive integer k. 

uuAuu)uAuAuA kk λλλλλλ =⇒==== 22 (  

(2) When A is nonsingular, λk is an eigenvalue of Ak for integer k; especially, if A is 
nonsingular with eigenvalue λ, the inverse 1−A  has 1−λ  as an eigenvalue. 

uAuAuuAu 11 −− ==⇒= λλλ . 

Note that IA =0 . 
(3) For a scalar a, aλ is an eigenvalue of aA )( uAu λaa = . 

6. The eigenvectors of A and Ak are the same. 
7. The eigenvalues of an idempotent matrix are either 0 or 1. 

(1) The only full rank, symmetric idempotent matrix is the identity matrix I. 
(2) All symmetric idempotent matrices except the identity matrix are singular. 

8. The rank of an idempotent matrix is equal to its trace. 
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Quadratic Forms and Definite Matrices 
 

 Many optimization problems involve double sums of the form 

∑ ∑= == n
i

n
j jiij xxaq 1 1 . 

This quadratic form can be written as: 
Axx′=q , 

where nnija ×= ][A  is a symmetric matrix with order n and nℜ∈x .  In general, q may be 
positive or negative, depending on A and x.  However, there are some matrices for which q 
will be positive (or negative) regardless of x. 
 A symmetric matrix A with order n is: 
1. Positive definite (p.d.) if 0Axx >′  for all nℜ∈x , except x ≠ 0; 
2. Negative definite (n.d.) if 0Axx <′  for all nℜ∈x , except x ≠ 0; 
3. Positive semi-definite (p.s.d.) if 0Axx ≥′  for all nℜ∈x ; 
4. Negative semi-definite (n.s.d.) if 0Axx ≤′  for all nℜ∈x . 

Some properties: 
1. The eigenvalues of a p.d. (n.d.) matrix are all positive (negative). 
2. The eigenvalues of a p.s.d. (n.s.d.) matrix are all positive or zero (negative or zero). 
3. If A is p.d. (p.s.d.), then det(A) > (≥) 0. 
4. If A is n.d. (n.s.d.), then det(A) < (≤) 0 for odd order and det(A) > (≥) 0 for even order. 
5. If A is p.d. (n.d.), so is A−1. 
6. The identity matrix I is p.d. 
7. When A is p.d., λk is an eigenvalue of Ak for any real number k.  Especially, 

UUΛA ′≡ 2121  and AAA =2121 .  Note that the eigenvalues of 21A  are the 
square roots of the eigenvalues of A. 

8. If A is n × K with full column rank and n > K, then AA′  is p.d. and AA ′  is p.s.d. 

Since 0Ax ≠  for all x ≠ 0, 0yyAxAxAxAx >=′=′=′′ ∑ =
K
i iy1

2)( . 
9. Every idempotent matrix is p.s.d. 

10. If A is symmetric and idempotent, n × n with rank J, then every quadratic form in A can 

be written as ∑ ==′ J
i iy1

2Axx  
11. Suppose that both A and B have the same dimensions.  We say that A is larger than B 

(A > B) if A − B is positive definite. 
B)x(AxBxxAxx −′=′−′=d  

12. If A > B, then B−1 > A−1. 
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Moments of Random Vectors 

Definition:  Let y be an n × 1 random vector. 

(1) The expected value of y, denoted E(y), is the vector of expected values:  

[ ]′= )(,),(),()( 21 nyEyEyEE …y . 

(2) Its variance-covariance matrix, denoted Var(y), is defined as 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2
21

2
2
221

112
2
1

)(Var

nnn

n

n

σσσ

σσσ
σσσ

"
#%##

"
"

y  

where )(Var2
jj y=σ  and ),(Cov jiij yy=σ .  It is obvious that a variance-covariance 

matrix is symmetric. 

Properties:  Let A be an m × n nonrandom matrix and a be an n × 1 nonrandom vector. 

(1) E(Ay + a) = AE(y) + a. 

(2) 0)(Var)(Var ≥′=′ ayaya . 

(3) If 0)(Var >′ya  for all a ≠ 0, Var(y) is positive definite. 

(4) [ ]))(()(Var ′−−= µyµyy E , where µ = E(y). 

(5) If the elements are uncorrelated, 0=ijσ  for i ≠ j, Var(y) is a diagonal matrix.  If, in 

addition, 2)(Var σ=jy  for j = 1, 2,…, n, then Var(y) nI2σ= . 

(6) [ ]AyAaAy ′=+ )(Var)(Var . 
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Distribution of Quadratic Forms 

 Let y be an n × 1 multivariate normal random vector with mean µ and 
variance-covariance matrix Σ, written as ( )Σµy ,~ N . 

Properties:  Let A and B be square matrices with order n, and b be an n × 1 vector. 

(1) Each element of y is normally distributed. 

(2) Any two elements of y, iy  and jy , are independent if and only if they are 

uncorrelated, that is, 0=ijσ . 

(3) ( )AAΣbAµbAy ′++ ,~ N . 

(4) If 0µ =  and nIΣ = , then 2~ nχyy′ . 

(5) If ( )Σµy ,~ N , ( )nN I0µyΣ ,~)(21 −−  

(6) If ( )Σµy ,~ N , 21 ~)()( nχµyΣµy −′− − . 

(7) If ( )nN I0y ,~  and A is symmetric idempotent, then 2~ qχAyy′  where q = tr(A). 

(8) If ( )nN I0y ,~ , then 2
)1(

0 ~ −′ nχyMy . 

(9) If ( )nN I0y ,~  and A and B are symmetric idempotent, then Ayy′  and Byy′  are 

independent if AB = 0. 

(10) If ( )nN I0y ,~ , A and B are symmetric idempotent, and AB = 0, then 

[ ]ba
b

a rrF
r
r ,~

Byy
Ayy
′
′

 

where )(tr A=ar  and )(tr B=br . 

(11) If ( )nN I0y ,~ , A is symmetric idempotent, and L be an m × n matrix, then Ly  and 

Ayy′  are independent if LA = 0. 

(12) If ( )nN I0y ,~  and Ab = 0, qtq
~

Ayy
bbyb

′
′′

 where q = tr(A). 

(13) If ( )nN I0y ,~ , )1(0
~

)1(

)1(
−

−′

′
nt

n

n

yMy

y1 . 
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Differential Operators 

This section consider three kinds of differential calculus:  Scalar, vectors, and quadratic 
forms. 

1. Scalars:  a
x
xa
=

∂
′∂ .  The symbol 

x∂
∂  represent a whole vector of differential 

operators. 

Example:  [ ] xa′=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=++=

3

2

1

321 943943
x
x
x

xxxq .  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

∂
′∂

=
∂
′∂

=
∂
∂

9
4
3

a
x
ax

x
xa

x
q . 

2. Vectors:  A
x
Ax
=

∂
′∂  A

x
Ax ′=
∂
∂ . 

Give 
[ ] [ ] Axaxaxaxy ′=′′′==′ nnyyy "" 2121  

where the ith element of y is iiy ax′=  for ia  being the ith column of A, with i = 1,…, n. 

[ ] Aaaa
x
ax

x
ax

x
ax

xxxx
y

==⎥⎦
⎤

⎢⎣
⎡

∂
′∂

∂
′∂

∂
′∂

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

∂
∂

=
∂
′∂

n
nnyyy """ 21

2121 . 

Example:  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
+−
−+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

321

321

321

3

2

1

743
423

62

743
423
162

xxx
xxx
xxx

x
x
x

Ax  gives 

=
∂
∂

x
Ax

⎥⎦
⎤

⎢⎣
⎡

∂
++∂

∂
+−∂

∂
−+∂

xxx
)743()423()62( 321321321 xxxxxxxxx A′=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

741
426
332

 

3. Quadratic forms:  
x

Qx
x
Px

x
Axx

∂
∂

+
∂
′∂

=
∂
′∂ , where P = Ax and Q = Ax′ ; hence,  

.xAAxQP
x
Axx ′+=′+=
∂
′∂   Furthermore, if A is symmetrical, then .2Ax

x
Axx

=
∂
′∂  

Example:  [ ] 2
332

2
23121

2
1

3

2

1

321 9144106
975
743
531

xxxxxxxxx
x
x
x

xxxq +++++=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= , 

Ax
x

2
181410

1486
1062

321

321

321

3

2

1

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++
++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂
∂∂
∂∂

=
∂
∂

xxx
xxx
xxx

xq
xq
xq

q .  
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The Matrix Form of Simple Linear Regression Models 
 Consider the simple regression model with N observations 

Nnεxββy nnn ,,2,1,21 …=++=      (B1) 
This can be written as 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ny

y
y

#
2

1

 = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Nx

x
x

1

1
1

2

1

## ⎥
⎦

⎤
⎢
⎣

⎡

2

1

β
β  + 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Nε

ε
ε

#
2

1

     (B2) 

or  
Y = Xβ + ε        (B3) 

where Y 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Ny

y
y

#
2

1

  X = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Nx

x
x

1

1
1

2

1

##
  β ⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

β
β   ε 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nε

ε
ε

#
2

1

 

 Assumptions of the linear Regression model: 
(1) Y = Xβ + ε 

(2) E(ε) = 
( )

( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

01

##

NE

E

ε

ε
 = 0 

(3) E(ε ε' )
( ) ( )

( ) ( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
2

1

1
2
1

NN

N

EE

EE

εεε

εεε

"
#%#

"

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
2

2

0

0

σ

σ

"
#%#

"
= 2σ IN. 

(4) X is an N × 2 matrix with det (X′ X) ≠ 0. 

(5) (Optional) ε ~ N(0, 2σ IN). 
 Under the assumptions discussed before, the best (minimum variance) linear unbiased 
estimator (BLUE) of β is obtained by minimizing the error sum of squares 

S(β) = ε′ε = (Y − Xβ)′( Y − Xβ)     (B4) 

This is known as the Gauss-Markov theorem. 
 Using the formulas for vector differentiation, we have 
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β
β
β XXYXS ′+′−=

∂
∂ 22)( .      (B5) 

Setting the equation (B6) to be zero gives the normal equation 

(X′ X) β̂  = X′ Y.        (B6) 

Since the square matrix (X′ X) is non-singular, the OLS estimator β̂  is 

β̂  = (X′X)−1X′Y        (B7) 

Substituting equation (B3) into equation (B7), we get 

β̂  = (X′X)−1X′Y = (X′X)−1X′( Xβ + ε) = β + (X′X)−1X′ε 

Since E(ε) = 0, we have ( ) ββ =ˆE .  Thus β̂  is an unbiased estimator.  Also, 

Var ( )β̂  = ( )( ) ( ) ( ) ( ) 11 −− ′′′′=
′

XXXEXXX-β-βE εεββ ˆˆ  

= ( ) 12 −′XXσ   since ( ) NIE 2σεε =′ . 

The β̂  is unbiased and has a covariance matrix ( ) 12 −′XXσ . 

 According to equation (B7), the vectors of fitted values Ŷ  and the least squares 
residuals ε̂  are 

Ŷ  = X β̂  = X(X′X)−1X′Y = PXY      (B?) 

ε̂  = Y − Ŷ = Y − PXY = (I − PX)Y = MXY    (B$) 

where PX = X(X′X)−1X′ and MX = (IN − PX).  Note that it can be shown that PX PX = PX and 
MX MX = MX (PX and MX are called idempotent matrices). 
 The total variation of the dependent variable is the sum of squared deviations from its 
mean (SST): 

SST = ( )21∑ = −N
i i yy  = Y′ Y − 2yn . 

 It can be shown that total sum of squares = regression sum of squares + error sum of 
squares (SST = SSR + SSE), where 

SSR = Y′PXY− 2yn  = Y′X(X′X)−1X′Y− 2yn  = YXβ ′′ˆ − 2yn  

SSE = ( )YPIY XN −′  = YMY X′  = YMMY XX′′  = εε ˆˆ′  
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The unbiased estimator of 2σ is  
( )

222 −
−′

=
−
′

=
−

=
NN

2 YPIY
N
SSEσ XNεε ˆˆˆ . 

 We now calculate elements of some matrices discussed above in order to verify some 
results derived in earlier classes: 

(X′X) = ⎥
⎦

⎤
⎢
⎣

⎡

Nxxx "
"

21

111

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Nx

x
x

1

1
1

2

1

##
 = 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∑∑
∑

==

=
N
n n

N
n n

N
n n

xx

xN

1
2

1

1  

(X′X)−1 = 
( )∑ ∑= =−N

n
N
n nn xxN 1

2
1

2

1
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−

∑
∑∑

=

==

Nx

xx
N
n n

N
n n

N
n n

1

11
2

 

(X′Y) = ⎥
⎦

⎤
⎢
⎣

⎡

Nxxx "
"

21

111

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ny

y
y

#
2

1

 = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∑
∑

=

=
N
n nn

N
n n

yx

y

1

1 . 

Base on the above results, we have  

β̂  = ⎥
⎦

⎤
⎢
⎣

⎡

2

1
ˆ
ˆ

β
β  = (X′X)−1X′Y  

= 
( )∑ ∑= =−N

n
N
n nn xxN 1

2
1

2

1
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−

∑
∑∑

=

==

Nx

xx
N
n n

N
n n

N
n n

1

11
2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∑
∑

=

=
N
n nn

N
n n

yx

y

1

1  

= 
( )∑ ∑= =−N

n
N
n nn xxN 1

2
1

2

1
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−

∑∑∑
∑∑∑∑

===

====
N
n n

N
n n

N
n nn

N
n nn

N
n n

N
n n

N
n n

yxyxN

yxxyx

111

1111
2

 

The covariance matrix of β̂  is  

Var( β̂ ) = ( ) 12 −′XXσ  = 
( )∑ ∑−= =

N
n

N
n nn xxN 1

2
1

2

2σ
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−

∑
∑∑

=

==

Nx

xx
N
n n

N
n n

N
n n

1

11
2
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The Matrix Form of Multiple Linear Regression Models 

 Suppose that we have the following N observations: 

NNKKKNN

KK

KK

xxxy

xxxy
xxxy

εββββ

εββββ
εββββ

+++++=

+++++=
+++++=

"
##"####

"
"

33221

2223322212

1113312211

 

The matrix form is  

Y = Xβ + ε 
where 

Y 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Ny

y
y

#
2

1

  X 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NKN

K

K

xx

xx
xx

"
#%##

"
"

2

222

112

1

1
1

  β 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Kβ

β
β

#
2

1

  ε 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

Nε

ε
ε

#
2

1

 

 The assumptions of the multiple linear Regression model are the same as the simple 
linear regression model except X being an N × K matrix.  Other matrix algebras are exactly 
the same as the simple linear regression model 
 


