Matrix Algebra

A matrix is a rectangular array (arrangement) of real numbers. The number of rows and columns may very from one matrix to another, so we conveniently describe the size of a matrix by giving its dimensions—that is, the number of its rows and columns. For example, matrix **A** consisting of two rows and three columns is written as

$$\mathbf{A}_{2\times 3} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}.$$

Denote a_{ij} and b_{ij} to be the scalar in the *i*th row and *j*th column of matrix **A** and **B**, respectively. Matrices **A** and **B** are equal if and only if they have the same dimensions and each element of **A** equals the corresponding element of **B**, i.e. $a_{ij} = b_{ij}$. The **transpose** of a matrix **A**, denoted \mathbf{A}^{T} (or \mathbf{A}'), is obtained by creating the matrix whose *k*th row is the *k*th column of the original matrix. For example,

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \qquad \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}.$$

Suppose that A is an $n \times m$ matrix. If *n* equals *m*, then A is a square matrix. There are several particular types of square matrices:

- (1) Matrix **A** is symmetric if $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$.
- (2) A **diagonal matrix** is a square matrix whose only nonzero elements appear on the main diagonal, moving from upper left to lower right.
- (3) A scalar matrix is a diagonal matrix with same value in all diagonal elements.
- (4) An **identity matrix** is a scalar matrix with ones on the diagonal. This is always denoted **I**. A subscript is sometimes included to indicate its size, or **order**. For example,

$$\mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(5) A **triangular matrix** is one that has only zeros either above or below the main diagonal. If the zeros are above the diagonal, the matrix is lower triangular.

Two matrices, say **A** and **B**, can be added only if they are of the same dimensions. The sum of two matrices will be a matrix obtained by adding corresponding elements of matrices **A** and **B**—that is, elements in corresponding positions; that is, if $\mathbf{P} = \mathbf{A} + \mathbf{B}$, then $p_{ij} = a_{ij} + b_{ij}$ for all *i* and *j*... For example,

$$\mathbf{A}_{2\times 3} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{B}_{2\times 3} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \end{bmatrix}$$
$$\mathbf{P} = \mathbf{A} + \mathbf{B} = \begin{bmatrix} 1+2 & 3+2 & 5+3 \\ 2+0 & 4+(-1) & 6+(-2) \end{bmatrix} = \begin{bmatrix} 3 & 5 & 8 \\ 2 & 3 & 4 \end{bmatrix}$$

The difference of matrices is carried out in a similar manner. For example, $\mathbf{Q} = \mathbf{A} - \mathbf{B}$, then $q_{ij} = a_{ij} - b_{ij}$ for all *i* and *j*.

For an $m \times n$ matrix **A** and scalar *c*, we define the **product** of *c* and **A**, denoted *c***A**, to be the $m \times n$ matrix whose *i*th row and *j*th column is $c a_{ij}$. We could denote (-1) **B** by - **B** and define the difference of **A** and **B**, denoted **A** - **B**, as **A** + (-**B**).

Let **A** be an $m \times n$ matrix and let **B** be an $n \times p$ matrix. We define the **matrix product** of **A** and **B** to be the $m \times p$ matrix **AB** whose *i*th row and *j*th column is the dot product of *i*th row of **A** and *j*th column of **B**. That is, the *i*th row and *j*th column of **AB** is

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$
.

Example:
$$\mathbf{A}_{2\times 3} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$
, and $\mathbf{B}_{3\times 1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Then $\mathbf{AB}_{2\times 1} = \begin{bmatrix} 1 \times 1 + 3 \times 0 + 5 \times 1 = 6 \\ 2 \times 1 + 4 \times 0 + 6 \times 1 = 8 \end{bmatrix}$.

Note that matrices can only be multiplied together if they are **conformable**. That is, we can only form the matrix product **AB** *if the number of column in* **A** *equals the number of rows in* **B**. Thus, although it is the case that in normal scalar algebra ab = ba, a similar property does not normally hold for matrices. That is, in general, **AB BA**.

The inverse of a square matrix A is defined as that matrix, written as A^{-1} , for which

$$\mathbf{A}^{-1} \mathbf{A} = \mathbf{A} \mathbf{A}^{-1} = \mathbf{I}.$$

Note that only square matrices have inverses and that the inverse matrix is also square, otherwise it would be impossible to form both the matrix products $A^{-1} A$ and $A A^{-1}$. The inverse matrix is analogous to the reciprocal of ordinary scalar algebra. In order to find A^{-1} , we first need to induce the concepts of determinants, minor, and cofactors.

All square matrices **A** have associated with them a scalar quantity (i.e. a number) known as the **determinant** of the matrix and denoted either by det (**A**) or by $|\mathbf{A}|$. I believe that you can find the determinant of a 2 × 2 matrix without difficulties. Before we undertake the evaluation of larger determinants, it is necessary to define the term "**minor**" and "**cofactor**." If the *i*th row and *j*th column of a square matrix **A** are deleted, we obtain the so-called submatrix of the scalar a_{ij} . The determinant of this submatrix is known as its **minor**, and we denoted it by m_{ij} . All scalars in a matrix will obviously have minors.

The cofactor of any scalar in a matrix is closely related to the minor. The cofactor of

the scalar a_{ij} in the matrix A is defined as

$$c_{ij} = (-1)^{i+j} m_{ij}$$

where m_{ij} is the corresponding minor. Thus, a cofactor is simply a minor with an appropriate sign attached to it.

The determinant of a square matrix with order 3 (or higher order) can be obtained by taking *any row* or *column* of scalars from the matrix, multiply each scalar by its respective cofactor, and sum the resultant products. For example, to find the determinant of the matrix **A** with order 3, we could expand using the first row. This could give

$$\det (\mathbf{A}) = a_{11} c_{11} + a_{12} c_{12} + a_{13} c_{13} = a_{11} m_{11} - a_{12} m_{12} + a_{13} m_{13}.$$

Notice that whether we expand by the first row or the second column, we obtain the same value for the determinant.

Some properties of determinants:

- 1. Let A be an upper (or lower) triangular matrix, then the determinant of A is the product of its diagonal entries.
- 2. If A is diagonal matrix, then its determinant is the product of its diagonal entries.
- 3. If two rows of a square matrix \mathbf{A} are the same, det (\mathbf{A}) = 0.
- 4. Let **A** and **B** be square matrices with the same order. Then det (AB) = det (A) det (B).
- 5. For any nonzero scalar *a* and a square matrix **A** with order *n*, det $(a\mathbf{A}) = a^n \det(\mathbf{A})$.
- 6. Let A be a square matrix. Then A is invertible if and only if det $(A) \neq 0$.
- 7. If a square matrix **A** is invertible, then det $(\mathbf{A}^{-1}) = 1 / \det(\mathbf{A})$.
- 8. det $(\mathbf{A}^{\mathrm{T}}) = \det(\mathbf{A})$.
- 9. Let \mathbf{A}_1 and \mathbf{A}_2 be square matrices, we have $\det \begin{bmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{bmatrix} = \det (\mathbf{A}_1) \det (\mathbf{A}_2)$.

10.
$$\det \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} = \det(\mathbf{A}_{22}) \det(\mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21}) = \det(\mathbf{A}_{11}) \det(\mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}).$$

Let **A** be the square matrix with order *n*. The **adjoint** of **A** is obtained by replacing each scalar a_{ij} by its cofactor c_{ij} , and then **transposing** it. That is,

$$adj(\mathbf{A}) = \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ c_{11} & c_{22} & \cdots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{bmatrix}.$$

Suppose that det (A) $\neq 0$. The inverse matrix A^{-1} can be shown to be

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} adj(\mathbf{A}) = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ c_{12} & c_{22} & \cdots & c_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{bmatrix}.$$

Notice that the above equation is valid only if det $(\mathbf{A}) \neq 0$. If det $(\mathbf{A}) = 0$, then the matrix \mathbf{A} is said to be **singular** and *doe not have an inverse*. Furthermore, \mathbf{A}^{-1} , if it exists, is **unique**.

Example: $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$. Its determinant and adjoint matrix is, respectively,

det (A) = 6 and *adj* (A) =
$$\begin{bmatrix} -1 & 2 & 1 \\ 5 & -4 & 1 \\ 2 & 2 & -2 \end{bmatrix}^{T} = \begin{bmatrix} -1 & 5 & 2 \\ 2 & -4 & 2 \\ 1 & 1 & -2 \end{bmatrix}$$
.

Some properties of the inverse:

- 1. For any nonsingular matrices A and B, $(AB)^{-1} = B^{-1}A^{-1}$.
- 2. If a square matrix **A** is invertible, then det $(\mathbf{A}^{-1}) = 1 / \det (\mathbf{A})$.
- 3. For any nonzero scalar *a* and nonsingular matrix **A**, $(a \mathbf{A})^{-1} = \frac{1}{a} \sum_{i=1}^{n} \mathbf{A}^{-1}$.
- 4. For any nonsingular matrix \mathbf{A} , $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$.
- 5. For any nonsingular matrices \mathbf{A}_1 and \mathbf{A}_2 , $\begin{bmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}_1^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2^{-1} \end{bmatrix}$
- 6. Given Ax = b, for any nonsingular matrix **A**, and two column vectors **x** and **b**, then can solve $x = A^{-1}b$.

The Trace of a Matrix

The trace tr(A) of a square matrix A is the sum of all diagonal elements.

- 1. $tr(\mathbf{A}^{T}) = tr(\mathbf{A})$.
- 2. tr(scalar) = tr(scalar).
- 3. Let **A** and **B** be square matrices with the same order. tr(A + B) = tr(A) + tr(B).
- 4. For any $n \times k$ matrix **A** and $k \times n$ matrix **B**, tr(AB) = tr(BA).
- 5. For any scalar *a* and square matrix **A**, $tr(a\mathbf{A}) = a \cdot tr(\mathbf{A})$.
- 6. For conformable matrices A, B, C, and D, tr(ABCD) = tr(DABC) = tr(CDAB)

The Summation Vector

Denote $\mathbf{1}_n$ as an *n*-dimensional column vector with all elements 1, called the summation vector because it helps sum the elements of another vector \mathbf{x} in a vector multiplication as follows:

$$\mathbf{1}'_{n} \mathbf{x} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = x_{1} + x_{2} + \dots + x_{n} = \sum_{i=1}^{n} x_{i} .$$

Note that the result is a scalar, i.e., a single number.

The summation vector can be used to construct some interesting matrices as follows:

1. Since $\mathbf{1}'_{n}\mathbf{1}_{n} = n$ and $(\mathbf{1}'_{n}\mathbf{1}_{n})^{-1} = 1/n$, we have

$$(\mathbf{1}'_n\mathbf{1}_n)^{-1}\mathbf{1}'_n\mathbf{x} = \frac{1}{n}\sum_{i=1}^n x_i,$$

which is the average of the elements of the vector **x** and is usually denoted as \bar{x} .

2. We can "expand" the scalar \overline{x} to a vector of \overline{x} by simply multiplying it with $\mathbf{1}_n$ as follows:

$$\mathbf{1}_{n}(\mathbf{1}_{n}'\mathbf{1}_{n})^{-1}\mathbf{1}_{n}'\mathbf{x} = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)\mathbf{1}_{n} = \overline{x}\cdot\mathbf{1}_{n} = \begin{bmatrix}\overline{x}\\\overline{x}\\\vdots\\\overline{x}\end{bmatrix}$$

3. By subtracting the above vector of the average from the original vector **x**, we get the following vector of deviations:

$$\mathbf{x} - \mathbf{1}_n (\mathbf{1}'_n \mathbf{1}_n)^{-1} \mathbf{1}'_n \mathbf{x} = \mathbf{x} - \overline{x} \cdot \mathbf{1}_n = \begin{bmatrix} x_1 - \overline{x} \\ x_2 - \overline{x} \\ \vdots \\ x_n - \overline{x} \end{bmatrix} = (\mathbf{I}_n - \mathbf{1}_n (\mathbf{1}'_n \mathbf{1}_n)^{-1} \mathbf{1}'_n) \mathbf{x} = \mathbf{M}^0 \mathbf{x}$$

where $\mathbf{M}^0 = \mathbf{I}_n - \mathbf{1}_n (\mathbf{1}'_n \mathbf{1}_n)^{-1} \mathbf{1}'_n$ is a square matrices with order *n*. The diagonal elements of \mathbf{M}^0 are all (1-1/n) and its off-diagonal elements are all -1/n. Some useful results:

- 1. $\mathbf{M}^{0}\mathbf{1}_{n} = (\mathbf{I}_{n} \mathbf{1}_{n}(\mathbf{1}_{n}'\mathbf{1}_{n})^{-1}\mathbf{1}_{n}')\mathbf{1}_{n} = \mathbf{1}_{n} \mathbf{1}_{n}(\mathbf{1}_{n}'\mathbf{1}_{n})^{-1}\mathbf{1}_{n}'\mathbf{1}_{n} = \mathbf{0}$. Hence, $\mathbf{1}_{n}'\mathbf{M}^{0} = \mathbf{0}'$. The sum of deviation about the mean is then $\sum_{i=1}^{n} (x_{i} \overline{x}) = \mathbf{1}_{n}'(\mathbf{M}^{0}\mathbf{x}) = \mathbf{1}_{n}'\mathbf{0} = \mathbf{0}$.
- 2. The sum of squared deviations about the mean is

$$\sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}})^2 = (\mathbf{x} - \overline{\mathbf{x}} \mathbf{1}_n)' (\mathbf{x} - \overline{\mathbf{x}} \mathbf{1}_n) = (\mathbf{M}^0 \mathbf{x})' (\mathbf{M}^0 \mathbf{x}) = \mathbf{x}' \mathbf{M}^{0'} \mathbf{M}^0 \mathbf{x} = \mathbf{x}' \mathbf{M}^0 \mathbf{x}$$

since \mathbf{M}^0 is symmetric and $\mathbf{M}^0\mathbf{M}^0 = \mathbf{M}^0$.

Idempotent Matrix

An idempotent matrix, **P**, is one that is equal to its square, that is, $\mathbf{P}^2 = \mathbf{P}\mathbf{P} = \mathbf{P}$. It can be verified that if **P** is idempotent, then $(\mathbf{I} - \mathbf{P})$ is also an idempotent matrix. If **P** is a symmetric idempotent matrix (all of the idempotent matrices we shall encounter are symmetric), then $\mathbf{P'P} = \mathbf{P}$. Thus, \mathbf{M}^0 is a symmetric idempotent matrix.

Consider constructing a matrix of sums of squares and cross products in deviations from the column means. For two vectors **x** and **y**,

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = (\mathbf{M}^0 \mathbf{x})'(\mathbf{M}^0 \mathbf{y}) = \mathbf{x}' \mathbf{M}^0 \mathbf{y}.$$

Hence, $\begin{bmatrix} \sum_{i=1}^{n} (x_i - \overline{x})^2 & \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}) & \sum_{i=1}^{n} (y_i - \overline{y})^2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}' \mathbf{M}^0 \mathbf{x} & \mathbf{x}' \mathbf{M}^0 \mathbf{y} \\ \mathbf{y}' \mathbf{M}^0 \mathbf{x} & \mathbf{y}' \mathbf{M}^0 \mathbf{y} \end{bmatrix}$

Rank

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}$ are said to be linearly independent if the following equality holds

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k = \mathbf{0}$$

only when $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$. It is easy to see that no vector in a set of linearly independent vectors can be expressed as a linear combination of the other vectors.

Given
$$\mathbf{X}_{n \times k} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_k] = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$$

if among the *k* columns \mathbf{x}_j of \mathbf{X} only *c* are linearly independent, then we say the column rank of \mathbf{X} is *c*. If all *k* columns \mathbf{x}_j of \mathbf{X} are linearly independent, then we say \mathbf{X} has full column rank. The row rank of \mathbf{X} can be defined similarly. The smaller of the column rank and the row rank of \mathbf{X} is referred to as the rank of \mathbf{X} and denoted as rank(\mathbf{X}). Given that k < n, i.e., \mathbf{X} has more rows than columns, then rank(\mathbf{X}) = *k* if \mathbf{X} has full column rank. The implication of full column rank is that if \mathbf{X} is not of full column rank, rank(\mathbf{X}) < *k*, then at least one of its column is a linear combination of the other k - 1 columns.

Some properties:

- 1. Rank $(\mathbf{A}_{n \times k}) \le \min\{n, k\}$: The rank of a matrix cannot exceed its numbers of rows and columns.
- 2. When Rank $(\mathbf{A}_{n \times n}) = n$, A is nonsingular, i.e., \mathbf{A}^{-1} exists.

- 3. When $\operatorname{Rank}(\mathbf{A}_{n \times n}) < n$, then **A** is singular and \mathbf{A}^{-1} does not exist.
- 4. $\operatorname{Rank}(\mathbf{AB}) \leq \min\{\operatorname{Rank}(\mathbf{A}), \operatorname{Rank}(\mathbf{B})\}$
- 5. If **B** is a square matrix with full rank, Rank(AB) = Rank(A).
- 6. $\operatorname{Rank}(\mathbf{X}'\mathbf{X}) = \operatorname{Rank}(\mathbf{X}\mathbf{X}') = \operatorname{Rank}(\mathbf{X})$.

Eigenvalues and Eigenvectors of Symmetric Matrices

A useful set of results fro analyzing a square matrix **A** arises from the solutions to the set of equations

$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}.$

The pairs of solutions are the eigenvectors **u** and eigenvalues λ . If **u** is any solution vector, then $k\mathbf{u}$ is also for any value of k. To remove the indeterminacy, **u** is <u>normalized</u> so that $\mathbf{u'u} = 1$. The solution then consists of λ and (n - 1) unknown elements in **u**.

The above set of equations can be rewritten as:

$$(\mathbf{A} - \lambda \mathbf{I}) \mathbf{u} = \mathbf{0}.$$

If $(\mathbf{A} - \lambda \mathbf{I})$ is nonsingular, the only solution is $\mathbf{u} = \mathbf{0}$. Hence, the condition for \mathbf{u} and λ exist (other than $\mathbf{u} = \mathbf{0}$) is that $(\mathbf{A} - \lambda \mathbf{I})$ is nonsingular. Hence, if λ is a solution, then

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

This equation is called the characteristic equation of **A**. For a symmetric matrix **A** of order *n*, its characteristic equation is an *n*th-order polynomial in λ . There are *n* real roots to be denoted $\lambda_1, \lambda_2, ..., \lambda_n$, some of which may be zero. Corresponding to each λ_i is a vector **u**_i satisfying the following equation:

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$
 for $i = 1, 2, ..., n$

Note that for symmetric matrix, eigenvectors \mathbf{u}_i 's are distinct (the corresponding eigenvalues λ_i 's, although real, may not be distinct) and orthogonal, i.e., $\mathbf{u}'_i \mathbf{u}_j = 0$ for $i \neq j$. It is convenient to collect the *n*-eigenvectors in a $n \times n$ matrix whose *i*th column is the \mathbf{u}_i corresponding λ_i ,

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix},$$

and the *n*-eigenvalues in the same order, in a diagonal matrix,

$$\boldsymbol{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

Then, the full set of equations

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

is contained in

$$\mathbf{A}\mathbf{U} = \mathbf{U}\boldsymbol{\Lambda}$$
.

Since eigenvectors are orthogonal $\mathbf{u}'_i \mathbf{u}_j = 0$ for $i \neq j$ and normalized $\mathbf{u}'_i \mathbf{u}_i = 1$, we have $\mathbf{U}'\mathbf{U} = \mathbf{I}$.

This implies that $\mathbf{U}' = \mathbf{U}^{-1}$. It can be shown that $\mathbf{A} = \mathbf{U}\mathbf{A}\mathbf{U}' = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}'_i$ (spectral decomposition of a matrix **A**) and $\mathbf{U}'\mathbf{A}\mathbf{U} = \mathbf{\Lambda}$ (diagonalization of a matrix **A**).

Example: $\mathbf{A} = \begin{bmatrix} 5 & -3 \\ -3 & 5 \end{bmatrix}$. Its characteristic equation is $\det \begin{bmatrix} 5-\lambda & -3 \\ -3 & 5-\lambda \end{bmatrix} = (5-\lambda)^2 - 9 = 0.$

Hence, we have $\lambda_1 = 2$ and $\lambda_2 = 8$; $\mathbf{u}_1 = [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]^T$ and $\mathbf{u}_2 = [\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]^T$.

Some properties:

- 1. $\det(\mathbf{A}) = \det(\mathbf{U}\mathbf{A}\mathbf{U}') = \det(\mathbf{U})\det(\mathbf{A})\det(\mathbf{U}') = \det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$.
- 2. $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{U}\mathbf{A}\mathbf{U}') = \operatorname{tr}(\mathbf{A}\mathbf{U}'\mathbf{U}) = \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i}$.
- 3. Since U is nonsingular, $rank(A) = rank(UAU') = rank(\Lambda)$, the rank of A is equal to the number of nonzero eigenvalues.
- 4. The eigenvalues of a nonsingular matrix are all nonzero.
- 5. Let λ be an eigenvalue of **A**.
 - (1) When **A** is singular, λ^k is an eigenvalue of **A**^k for <u>positive integer</u> k.

$$\mathbf{A}^{2}\mathbf{u} = \mathbf{A}\lambda\mathbf{u} = \lambda\mathbf{A}\mathbf{u} = \lambda(\lambda\mathbf{u}) = \lambda^{2}\mathbf{u} \quad \Rightarrow \quad \mathbf{A}^{k}\mathbf{u} = \lambda^{k}\mathbf{u}$$

(2) When A is nonsingular, λ^k is an eigenvalue of \mathbf{A}^k for <u>integer</u> k; especially, if A is nonsingular with eigenvalue λ , the inverse \mathbf{A}^{-1} has λ^{-1} as an eigenvalue.

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u} \implies \mathbf{u} = \mathbf{A}^{-1}\lambda \mathbf{u} = \lambda \mathbf{A}^{-1}\mathbf{u}$$
.

Note that $\mathbf{A}^0 = \mathbf{I}$.

- (3) For a scalar *a*, $a\lambda$ is an eigenvalue of $a\mathbf{A} (a\mathbf{A}\mathbf{u} = a\lambda\mathbf{u})$.
- 6. The eigenvectors of \mathbf{A} and \mathbf{A}^k are the same.
- 7. The eigenvalues of an idempotent matrix are either 0 or 1.
 - (1) The only full rank, symmetric idempotent matrix is the identity matrix I.
 - (2) All symmetric idempotent matrices except the identity matrix are singular.
- 8. The rank of an idempotent matrix is equal to its trace.

Quadratic Forms and Definite Matrices

Many optimization problems involve double sums of the form

$$q = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \; .$$

This quadratic form can be written as:

$$q = \mathbf{x}' \mathbf{A} \mathbf{x} \,,$$

where $\mathbf{A} = [a_{ij}]_{n \times n}$ is a symmetric matrix with order *n* and $\mathbf{x} \in \mathbb{R}^n$. In general, *q* may be positive or negative, depending on **A** and **x**. However, there are some matrices for which *q* will be positive (or negative) regardless of **x**.

A symmetric matrix **A** with order *n* is:

- 1. Positive definite (p.d.) if $\mathbf{x}'\mathbf{A}\mathbf{x} > \mathbf{0}$ for all $\mathbf{x} \in \mathfrak{R}^n$, except $\mathbf{x} \neq \mathbf{0}$;
- 2. Negative definite (n.d.) if $\mathbf{x}'\mathbf{A}\mathbf{x} < \mathbf{0}$ for all $\mathbf{x} \in \Re^n$, except $\mathbf{x} \neq \mathbf{0}$;
- 3. Positive semi-definite (p.s.d.) if $\mathbf{x}'\mathbf{A}\mathbf{x} \ge \mathbf{0}$ for all $\mathbf{x} \in \mathfrak{R}^n$;
- 4. Negative semi-definite (n.s.d.) if $\mathbf{x}' \mathbf{A} \mathbf{x} \leq \mathbf{0}$ for all $\mathbf{x} \in \Re^n$.

Some properties:

- 1. The eigenvalues of a p.d. (n.d.) matrix are all positive (negative).
- 2. The eigenvalues of a p.s.d. (n.s.d.) matrix are all positive or zero (negative or zero).
- 3. If **A** is p.d. (p.s.d.), then $det(\mathbf{A}) > (\geq) 0$.
- 4. If **A** is n.d. (n.s.d.), then det(**A**) < (\leq) 0 for odd order and det(**A**) > (\geq) 0 for even order.
- 5. If **A** is p.d. (n.d.), so is A^{-1} .
- 6. The identity matrix **I** is p.d.
- 7. When **A** is p.d., λ^k is an eigenvalue of \mathbf{A}^k for any real number *k*. Especially, $\mathbf{A}^{1/2} \equiv \mathbf{U}\mathbf{A}^{1/2}\mathbf{U}'$ and $\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$. Note that the eigenvalues of $\mathbf{A}^{1/2}$ are the square roots of the eigenvalues of **A**.
- 8. If **A** is $n \times K$ with full column rank and n > K, then **A'A** is p.d. and **AA'** is p.s.d.

Since
$$\mathbf{A}\mathbf{x} \neq \mathbf{0}$$
 for all $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x}'\mathbf{A}'\mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x})'\mathbf{A}\mathbf{x} = \mathbf{y}'\mathbf{y} = \sum_{i=1}^{K} y_i^2 > \mathbf{0}$

- 9. Every idempotent matrix is p.s.d.
- 10. If **A** is symmetric and idempotent, $n \times n$ with rank *J*, then every quadratic form in **A** can be written as $\mathbf{x}'\mathbf{A}\mathbf{x} = \sum_{i=1}^{J} y_i^2$
- 11. Suppose that both A and B have the same dimensions. We say that A is larger than B (A > B) if A B is positive definite.

$$d = \mathbf{x}'\mathbf{A}\mathbf{x} - \mathbf{x}'\mathbf{B}\mathbf{x} = \mathbf{x}'(\mathbf{A} - \mathbf{B})\mathbf{x}$$

12. If A > B, then $B^{-1} > A^{-1}$.

Moments of Random Vectors

Definition: Let *y* be an $n \times 1$ random vector.

(1) The expected value of y, denoted E(y), is the vector of expected values:

$$E(\mathbf{y}) = [E(y_1), E(y_2), \dots, E(y_n)]'.$$

(2) Its variance-covariance matrix, denoted Var(y), is defined as

$$\operatorname{Var}(\mathbf{y}) = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{bmatrix}$$

where $\sigma_j^2 = \text{Var}(y_j)$ and $\sigma_{ij} = \text{Cov}(y_i, y_j)$. It is obvious that a variance-covariance matrix is symmetric.

Properties: Let **A** be an $m \times n$ nonrandom matrix and **a** be an $n \times 1$ nonrandom vector.

(1)
$$E(\mathbf{A}\mathbf{y} + \mathbf{a}) = \mathbf{A}E(\mathbf{y}) + \mathbf{a}.$$

- (2) $\operatorname{Var}(\mathbf{a}'\mathbf{y}) = \mathbf{a}'\operatorname{Var}(\mathbf{y})\mathbf{a} \ge 0$.
- (3) If $Var(\mathbf{a}'\mathbf{y}) > 0$ for all $\mathbf{a} \neq \mathbf{0}$, $Var(\mathbf{y})$ is positive definite.
- (4) $\operatorname{Var}(\mathbf{y}) = E[(\mathbf{y} \boldsymbol{\mu})(\mathbf{y} \boldsymbol{\mu})'], \text{ where } \boldsymbol{\mu} = E(\mathbf{y}).$
- (5) If the elements are uncorrelated, $\sigma_{ij} = 0$ for $i \neq j$, Var(y) is a diagonal matrix. If, in addition, $Var(y_j) = \sigma^2$ for j = 1, 2, ..., n, then $Var(y) = \sigma^2 \mathbf{I}_n$.
- (6) $\operatorname{Var}(\mathbf{A}\mathbf{y} + \mathbf{a}) = \mathbf{A}[\operatorname{Var}(\mathbf{y})]\mathbf{A}'.$

Distribution of Quadratic Forms

Let **y** be an $n \times 1$ multivariate normal random vector with mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, written as $\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Properties: Let **A** and **B** be square matrices with order *n*, and **b** be an $n \times 1$ vector.

- (1) Each element of **y** is normally distributed.
- (2) Any two elements of \mathbf{y} , y_i and y_j , are independent if and only if they are uncorrelated, that is, $\sigma_{ij} = 0$.
- (3) $\mathbf{A}\mathbf{y} + \mathbf{b} \sim N(\mathbf{A}\mathbf{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}').$
- (4) If $\boldsymbol{\mu} = \boldsymbol{0}$ and $\boldsymbol{\Sigma} = \mathbf{I}_n$, then $\mathbf{y}'\mathbf{y} \sim \chi_n^2$.
- (5) If $\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $\boldsymbol{\Sigma}^{-1/2}(\mathbf{y} \boldsymbol{\mu}) \sim N(\mathbf{0}, \mathbf{I}_n)$
- (6) If $\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $(\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu}) \sim \chi_n^2$.
- (7) If $\mathbf{y} \sim N(\mathbf{0}, \mathbf{I}_n)$ and \mathbf{A} is symmetric idempotent, then $\mathbf{y}' \mathbf{A} \mathbf{y} \sim \chi_q^2$ where $q = tr(\mathbf{A})$.
- (8) If $\mathbf{y} \sim N(\mathbf{0}, \mathbf{I}_n)$, then $\mathbf{y}' \mathbf{M}^0 \mathbf{y} \sim \chi^2_{(n-1)}$.
- (9) If $\mathbf{y} \sim N(\mathbf{0}, \mathbf{I}_n)$ and **A** and **B** are symmetric idempotent, then $\mathbf{y}'\mathbf{A}\mathbf{y}$ and $\mathbf{y}'\mathbf{B}\mathbf{y}$ are <u>independent</u> if $\mathbf{A}\mathbf{B} = \mathbf{0}$.
- (10) If $\mathbf{y} \sim N(\mathbf{0}, \mathbf{I}_n)$, **A** and **B** are symmetric idempotent, and $\mathbf{AB} = \mathbf{0}$, then

$$\frac{\mathbf{y'}\mathbf{A}\mathbf{y}/r_a}{\mathbf{y'}\mathbf{B}\mathbf{y}/r_b} \sim F[r_a, r_b]$$

where $r_a = tr(\mathbf{A})$ and $r_b = tr(\mathbf{B})$.

(11) If $\mathbf{y} \sim N(\mathbf{0}, \mathbf{I}_n)$, **A** is symmetric idempotent, and **L** be an $m \times n$ matrix, then **Ly** and $\mathbf{y}'\mathbf{A}\mathbf{y}$ are <u>independent</u> if $\mathbf{L}\mathbf{A} = \mathbf{0}$.

(12) If
$$\mathbf{y} \sim N(\mathbf{0}, \mathbf{I}_n)$$
 and $\mathbf{A}\mathbf{b} = \mathbf{0}$, $\frac{\mathbf{b}'\mathbf{y}/\sqrt{\mathbf{b}'\mathbf{b}}}{\sqrt{\mathbf{y}'\mathbf{A}\mathbf{y}/q}} \sim t_q$ where $q = \operatorname{tr}(\mathbf{A})$.

(13) If
$$\mathbf{y} \sim N(\mathbf{0}, \mathbf{I}_n)$$
, $\frac{(1/\sqrt{n}) \mathbf{1}' \mathbf{y}}{\sqrt{\mathbf{y}' \mathbf{M}^0 \mathbf{y}/(n-1)}} \sim t_{(n-1)}$.

Differential Operators

This section consider three kinds of differential calculus: Scalar, vectors, and quadratic forms.

1. Scalars: $\frac{\partial \mathbf{a}' \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$. The symbol $\frac{\partial}{\partial \mathbf{x}}$ represent a whole vector of differential operators.

Example:
$$q = 3x_1 + 4x_2 + 9x_3 = \begin{bmatrix} 3 & 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{a'x} \cdot \frac{\partial q}{\partial \mathbf{x}} = \frac{\partial \mathbf{a'x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x'a}}{\partial \mathbf{x}} = \mathbf{a} = \begin{bmatrix} 3 \\ 4 \\ 9 \end{bmatrix}.$$

2. Vectors: $\frac{\partial \mathbf{x}'\mathbf{A}}{\partial \mathbf{x}} = \mathbf{A} \quad \frac{\partial \mathbf{A}\mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}'.$

Give

$$\mathbf{y}' = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}'\mathbf{a}_1 & \mathbf{x}'\mathbf{a}_2 & \cdots & \mathbf{x}'\mathbf{a}_n \end{bmatrix} = \mathbf{x}'\mathbf{A}$$

where the *i*th element of **y** is $y_i = \mathbf{x'}\mathbf{a}_i$ for \mathbf{a}_i being the *i*th column of **A**, with i = 1, ..., n.

$$\frac{\partial \mathbf{y}'}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial \mathbf{x}} & \frac{\partial y_2}{\partial \mathbf{x}} & \cdots & \frac{\partial y_n}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{x}' \mathbf{a}_1}{\partial \mathbf{x}} & \frac{\partial \mathbf{x}' \mathbf{a}_2}{\partial \mathbf{x}} & \cdots & \frac{\partial \mathbf{x}' \mathbf{a}_n}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = \mathbf{A}.$$

Example:
$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 6 & -1 \\ 3 & -2 & 4 \\ 3 & 4 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 + 6x_2 - x_3 \\ 3x_1 - 2x_2 + 4x_3 \\ 3x_1 + 4x_2 + 7x_3 \end{bmatrix}$$
 gives

$$\frac{\partial \mathbf{A}\mathbf{x}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial(2x_1 + 6x_2 - x_3)}{\partial \mathbf{x}} & \frac{\partial(3x_1 - 2x_2 + 4x_3)}{\partial \mathbf{x}} & \frac{\partial(3x_1 + 4x_2 + 7x_3)}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 3 \\ 6 & -2 & 4 \\ -1 & 4 & 7 \end{bmatrix} = \mathbf{A}^{\mathbf{x}}$$

3. Quadratic forms: $\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}' \mathbf{P}}{\partial \mathbf{x}} + \frac{\partial \mathbf{Q} \mathbf{x}}{\partial \mathbf{x}}$, where $\mathbf{P} = \mathbf{A} \mathbf{x}$ and $\mathbf{Q} = \mathbf{x}' \mathbf{A}$; hence,

 $\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{P} + \mathbf{Q}' = \mathbf{A} \mathbf{x} + \mathbf{A}' \mathbf{x}.$ Furthermore, if **A** is symmetrical, then $\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}.$

Example: $q = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 5 \\ 3 & 4 & 7 \\ 5 & 7 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1^2 + 6x_1x_2 + 10x_1x_3 + 4x_2^2 + 14x_2x_3 + 9x_3^2,$

$$\frac{\partial q}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial q}{\partial x_1} \\ \frac{\partial q}{\partial x_2} \\ \frac{\partial q}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 + 6x_2 + 10x_3 \\ 6x_1 + 8x_2 + 14x_3 \\ 10x_1 + 14x_2 + 18x_3 \end{bmatrix} = 2\mathbf{A}\mathbf{x}$$

The Matrix Form of Simple Linear Regression Models

Consider the simple regression model with N observations

$$y_n = \beta_1 + \beta_2 x_n + \varepsilon_n, \qquad n = 1, 2, \dots, N$$
(B1)

This can be written as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$
(B2)

or

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{B3}$$

where
$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
 $\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}$ $\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$ $\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$

Assumptions of the linear Regression model:

(1) $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ (2) $E(\boldsymbol{\varepsilon}) = \begin{bmatrix} E(\varepsilon_1) \\ \vdots \\ E(\varepsilon_N) \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$ (3) $E(\boldsymbol{\varepsilon} \, \boldsymbol{\varepsilon}') = \begin{bmatrix} E(\varepsilon_1^2) & \cdots & E(\varepsilon_1 \varepsilon_N) \\ \vdots & \ddots & \vdots \\ E(\varepsilon_N \varepsilon_1) & \cdots & E(\varepsilon_N^2) \end{bmatrix} = \begin{bmatrix} \sigma^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma^2 \end{bmatrix} = \sigma^2 \mathbf{I}_N.$

(4) **X** is an $N \times 2$ matrix with det $(\mathbf{X}' \mathbf{X}) \neq 0$.

(5) (Optional) $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_N).$

Under the assumptions discussed before, the best (minimum variance) linear unbiased estimator (BLUE) of β is obtained by minimizing the error sum of squares

$$\mathbf{S}(\boldsymbol{\beta}) = \boldsymbol{\varepsilon}' \boldsymbol{\varepsilon} = (\mathbf{Y} - \mathbf{X} \boldsymbol{\beta})' (\mathbf{Y} - \mathbf{X} \boldsymbol{\beta}) \tag{B4}$$

This is known as the Gauss-Markov theorem.

Using the formulas for vector differentiation, we have

$$\frac{\partial S(\beta)}{\partial \beta} = -2X'Y + 2X'X\beta.$$
(B5)

Setting the equation (B6) to be zero gives the normal equation

$$(\mathbf{X}' \mathbf{X}) \hat{\boldsymbol{\beta}} = \mathbf{X}' \mathbf{Y}. \tag{B6}$$

Since the square matrix (X' X) is non-singular, the OLS estimator $\hat{\beta}$ is

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$
(B7)

Substituting equation (B3) into equation (B7), we get

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}$$

Since $E(\varepsilon) = 0$, we have $E(\hat{\beta}) = \beta$. Thus $\hat{\beta}$ is an unbiased estimator. Also,

$$\operatorname{Var}(\hat{\beta}) = E(\hat{\beta} - \beta)(\hat{\beta} - \beta)' = (X'X)^{-1}X'E(\varepsilon\varepsilon')X(X'X)^{-1}$$
$$= \sigma^{2}(X'X)^{-1} \quad \text{since} \quad E(\varepsilon\varepsilon') = \sigma^{2}I_{N}.$$

The $\hat{\beta}$ is unbiased and has a covariance matrix $\sigma^2(X'X)^{-1}$.

According to equation (B7), the vectors of fitted values \hat{Y} and the least squares residuals $\hat{\varepsilon}$ are

$$\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y = P_XY$$
(B?)

$$\hat{\varepsilon} = \mathbf{Y} - \hat{Y} = \mathbf{Y} - \mathbf{P}_{\mathbf{X}}\mathbf{Y} = (\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} = \mathbf{M}_{\mathbf{X}}\mathbf{Y}$$
 (B\$)

where $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ and $\mathbf{M}_{\mathbf{X}} = (\mathbf{I}_N - \mathbf{P}_{\mathbf{X}})$. Note that it can be shown that $\mathbf{P}_{\mathbf{X}} \mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}}$ and $\mathbf{M}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}} = \mathbf{M}_{\mathbf{X}}$ ($\mathbf{P}_{\mathbf{X}}$ and $\mathbf{M}_{\mathbf{X}}$ are called <u>idempotent</u> matrices).

The total variation of the dependent variable is the sum of squared deviations from its mean (SST):

$$\mathbf{SST} = \sum_{i=1}^{N} (y_i - \overline{y})^2 = \mathbf{Y'} \mathbf{Y} - n \overline{y}^2.$$

It can be shown that total sum of squares = regression sum of squares + error sum of squares (SST = SSR + SSE), where

$$SSR = Y'P_XY - n\overline{y}^2 = Y'X(X'X)^{-1}X'Y - n\overline{y}^2 = \hat{\beta}'X'Y - n\overline{y}^2$$
$$SSE = Y'(I_N - P_X)Y = Y'M_XY = Y'M'_XM_XY = \hat{\epsilon}'\hat{\epsilon}$$

The unbiased estimator of σ^2 is

$$\hat{\sigma}^2 = \frac{SSE}{N-2} = \frac{\hat{\varepsilon}'\hat{\varepsilon}}{N-2} = \frac{Y'(I_N - P_X)Y}{N-2}.$$

We now calculate elements of some matrices discussed above in order to verify some results derived in earlier classes:

$$(\mathbf{X'X}) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_N \end{bmatrix} \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix} = \begin{bmatrix} N & \sum_{n=1}^N x_n \\ \sum_{n=1}^N x_n & \sum_{n=1}^N x_n^2 \end{bmatrix}$$
$$(\mathbf{X'X})^{-1} = \frac{1}{N\sum_{n=1}^N x_n^2 - \left(\sum_{n=1}^N x_n\right)^2} \begin{bmatrix} \sum_{n=1}^N x_n^2 & -\sum_{n=1}^N x_n \\ -\sum_{n=1}^N x_n & N \end{bmatrix}$$
$$(\mathbf{X'Y}) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_N \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} \sum_{n=1}^N y_n \\ \sum_{n=1}^N x_n y_n \end{bmatrix}.$$

Base on the above results, we have

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$= \frac{1}{N\sum_{n=1}^N x_n^2 - \left(\sum_{n=1}^N x_n\right)^2} \begin{bmatrix} \sum_{n=1}^N x_n^2 & -\sum_{n=1}^N x_n \\ -\sum_{n=1}^N x_n & N \end{bmatrix} \begin{bmatrix} \sum_{n=1}^N y_n \\ \sum_{n=1}^N x_n y_n \end{bmatrix}$$

$$= \frac{1}{N\sum_{n=1}^N x_n^2 - \left(\sum_{n=1}^N x_n\right)^2} \begin{bmatrix} \sum_{n=1}^N x_n^2 \sum_{n=1}^N y_n - \sum_{n=1}^N x_n \sum_{n=1}^N x_n y_n \\ N\sum_{n=1}^N x_n y_n - \sum_{n=1}^N x_n \sum_{n=1}^N y_n \end{bmatrix}$$

The covariance matrix of $\hat{\beta}$ is

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\sigma}^{2} (\boldsymbol{X}' \boldsymbol{X})^{-1} = \frac{\boldsymbol{\sigma}^{2}}{N \sum_{n=1}^{N} x_{n}^{2} - (\sum_{n=1}^{N} x_{n})^{2}} \begin{bmatrix} \sum_{n=1}^{N} x_{n}^{2} & -\sum_{n=1}^{N} x_{n} \\ -\sum_{n=1}^{N} x_{n} & N \end{bmatrix}$$

The Matrix Form of Multiple Linear Regression Models

Suppose that we have the following *N* observations:

$$y_{1} = \beta_{1} + \beta_{2}x_{12} + \beta_{3}x_{13} + \dots + \beta_{K}x_{1K} + \varepsilon_{1}$$

$$y_{2} = \beta_{1} + \beta_{2}x_{22} + \beta_{3}x_{23} + \dots + \beta_{K}x_{2K} + \varepsilon_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$y_{N} = \beta_{1} + \beta_{2}x_{N2} + \beta_{3}x_{K3} + \dots + \beta_{K}x_{NK} + \varepsilon_{N}$$

The matrix form is

$$Y = X\beta + \varepsilon$$

where

$$\boldsymbol{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \qquad \boldsymbol{X} = \begin{bmatrix} 1 & x_{12} & \cdots & x_{1K} \\ 1 & x_{22} & \cdots & x_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N2} & \cdots & x_{NK} \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_K \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$

The assumptions of the multiple linear Regression model are the same as the simple linear regression model *except* \mathbf{X} being an $N \times K$ matrix. Other matrix algebras are exactly the same as the simple linear regression model