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Chapter | Combinatorial Analysis

In many experiments with finite possible results, such as tossing one die, it may be reasonable
to assume that all the possible results are equally likely. In that case, a redlistic probability model
should be solved by ssimply counting the number of different ways that a certain event can occur.
The mathematical theory of counting is formally known as combinatorial analysis.

Principle of Counting: If r experiments that are to be performed are such that the first one
may result in any of n, possible outcomes, and if for each of these n, possible outcomes there
are n, possible outcomes of the second experiment, and if for each of the possible outcomes of the
first two experiments there are n; possible outcomes of third experiment, and if,..., then there are
atotal of n; x n, x--- xn, possible outcomes of the r experiments.

Example 1-1: How many different 7-place license plates are possible if the first 3 places are
to be occupied by letters and the final 4 by numbers? How many license plates would be possible
if repetition among letters or numbers are prohibited?

Solution: (a) 26* 26* 26* 10* 10* 10* 10 = 175,760,000.
(b) 26*25*24*10*9*8* 7 = 78,624,000. &

Example 1-2:  How many functions defined on n points are possible if each functional value
iseither Oor 1? Solution: 2". ©

Permutation is the ordered arrangements of a set of n objects. How many different ordered
arrangements of a set of n objects? There are n(n —1)(n - 2)---(3)(2)(1) = n! possible orders.
We might want to determine the number of permutations of n objects, of which n, are alike, n,

|
are alike,..., n, are aike, giventhat n, +n, +---+n, =n. There are % different
permutations.

We are often interested in determining the number of different groups of r objects that could be
formed from atotal of n objects (combinations). If the order is relevant, say permutations, there
ae n(n—D(n-2)---(n—r +1) possible permutations. Since every group consists of the same
items will be counted r(r —D(r — 2)---(2)(1) = r! times, it follows that the total number of

nn-H(n-2)--(n-r+1  nl denoted by @

groups that can be formed is =
r! (n—=r)ir!

r-1 r
by combinatorial argument. Consider a group of n objects and fix attention on some particular one

-1 -1
A useful combinatoria identity is (n] = (n J+ (n J 1<r <n. Itcan be proved
r
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n
of these objects—call it object 1. Now, there are ( J combinations of size r that contain
r —

: n N . : :
object 1. Also, there are ( ] combinations of size r that do not contain object 1. As there

r

n n
are a total of ( ]combinations of size r. The vaue (

. rJ are often referred to as binomid

coefficients.

Binomial theorem: (x + y)" = zn: (n} xkynk. (1.1)
k=0

1 1
Proof by Induction: When n=1, Equation (1.1) reducesto x + y = (Oj X%yt + [lj xty°.
Assume Equation (1.1) for n—1. Now

(x+y)" = (x+y)(x+y"?
= (X + y)nz_ll[n B ljxkynlk
k=o\ K
= nz—:l[n - 1jxk+lynlk n nz—ll(n - 1} K ynfk .

k=0l K k=0l K
Letting i = k +1 inthefirstsumand i = k inthe second sum, we find that

(x+y)" =3 (in__ﬂx‘ Y zo(” _1jx‘ Y

i=1 i

n o, o n-1 n-1 i ,n-i n
: *Eﬂi—l}( i ﬂxy e
:x”+r§(ﬂ Xy" 4y
Zn:(l-‘]jxiyni. o

i=0 \ |

We now consider the following problem: A set of n distinct items is to be divided into r
distinct groups of respective sizes n;,n,,...,n,, where n, +n, +---+n, =n. How many

y Mo

n
different divisions are possible? To answer this, we note that there are (n j possible choices for
1

n-n
the first group; for each choice of the first group there are ( 1} possible choices for the

n,
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nyn-n n-n —--—n, n
second group; and so on. Hence, there are 0 =
1

n, n, n!nyt---n!

n
possible divisions, denoted by ( j .
N, Ny,yeeny Ny
Example 1-3:  In how many ways can a man divide 7 gifts among his 3 children if the eldest

322 322’
Example 1-4: In order to play a game of basketball, 10 boys a a playground divide
themselves into two teams of 5 each. How many different divisions are possible?
Solution: Note that this example is different from the previous one since now the order of the two

7 1
isto receive 3 gifts and the others 2 each? Answer: ( ] L

teamsisirrelevant. The answer is 51!0'5! 2=126. 1A

N n
The Multinomial Theorem: (X, + X, + -+ X,)" = > ( Jxl”lxgz e XY
) nl,nz,...,nr
M +Np+-+Np =N

That is, the sum is over al nonnegative integer-valued vectors (n,n,,...,Nn,) such that
n1+n2+"+nr:n.
Proof: Theproof isleft asan exercise. H

There are r" possible outcomes when n distinguishable balls are to be distributed into r
distinguishable urns.  Suppose that the n balls are indistinguishable from each other.  In this case,
how many different outcomes are possible? In other words, it is to find the number of distinct
nonnegative integer-valued vector (x;, X,,...,X,) such that x, + X, +---+ X, =n. It can be

imagined that we have n indistinguishable objects lined up and that we want to divide them into r
nonempty groups.

AA, .. A
Choose r —1of thespace", "from nobjects"A."

Figure1l-1

To do so, we can select r — 1 of the n — 1 spaces between adjacent objects as our dividing points.

n
(SeeFigure1-1.) Asthereare possible selections, we obtain the following proposition.
1

n
Proposition 1-1: There are (
r —

1] distinct positive integer-valued vectors (X, Xy, ..., X;)
satisfying X, + X, +---+ X =n, X >0,i=21...,r. H

Note that the number of nonnegative solutions of X, + X, + - + X, = n is the same as the
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number of positive solutions of y;+yo+---+y, =n+r (let y,=x+1 i=%L...,r).
Hence, from Proposition 1-1, we obtain the following proposition.

n+r-1), . . .
1 j distinct nonnegative integer-valued vectors

Proposition 1-2: There are (

(Xgs Xp,y..0y X ) stisfying X, + X, +--+ X, =n. H

Example 1-5: An investor has 20 thousand dollars to invest among 4 possible investments.
Each investment must be in units of athousand dollars. If the total 20 thousand is to be invested,
how many different investment strategies are possible? What if each investment need be invested
at least one thousand dollars? What if not all the money need be invested?

Solution: If welet vy, i =1, 2, 3, 4, denote the number of thousands invested in investment
number i, then, when al isto beinvested, (y;,Y,, Ys,Y,) areintegerssatisfying

Yi+ Y2+ Y3 +Y,=20, vy 20.
23
Hence, by Proposition 1-2, there are ( 3] = 1771 possible investment strategies.

If each investment need be invested at least one thousand dollars, if welet x;,i=1, 2, 3, 4, be

the number of thousands invested in investment i, a strategy is a positive integer-valued vectors
(Xqs X5, X3, X,) Satisfying
X+ X, + X3+ X, =20, X >0.

19
Hence, by Proposition 1-1, there are ( 3] = 969 possible investment strategies.

If not all of the money need be invested, then, if welet y. denote the amount kept in reserve,
astrategy is anonnegative inter-valued vector (Y;, Yo, Y3, Y4, Ys) Satisfying

Yi+ Yo+ VYa+Ya+Ys =20, vy >0,

24
Hence, by Proposition 1-2, there are ( 4) = 10626 possiblestrategies. H

e R AR

whenever r < n, r <m.
Proof: Consider a group of n men and m women. We want to find the number of different

) n+m _ ny m _
groups of sizer. Thereare( i ]groupsof sizer. Asthere are (i}(r J groups of size

r that consist of i men and r — i women, we see that (n+m]: i(n]( m'j. a
r i—o\i \r —i



