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Chapter II Probability 

2.1  Basic Concepts 

The discipline of statistics deals with the collection and analysis of data.  When 
measurements are taken, even seemingly under the same conditions, the results usually vary.  
Variability is a fact of life, and proper statistical methods can help us understand data collected 
under inherent variability. 

The term experiment refers to the process of obtaining an observed result of some 
phenomenon, and a performance of an experiment is called a trial of the experiment.  An 
observation result, on a trial of the experiment, is called an outcome.  An experiment, the outcome 
of which cannot be predicted with certainty, but the experiment is of such a nature that the 
collection of every possible outcome can described prior to its performance, is called a random 
experiment.  The collection of all possible outcomes is called the outcome space or the sample 
space, denoted by S. 

2.2  Algebra of Sets 

If each element of a set 1A  is also an element of set 2A , the set 1A  is called a subset of the 
set 2A , indicated by writing 21 AA ⊂ .  If 21 AA ⊂  and 12 AA ⊂ , the two sets have the same 
elements, indicated by writing 21 AA = .  If a set A has no elements, A is called the null set, 
indicated by writing ∅=A .  Note that a null set is a subset of all sets. 

The set of all elements that belong to at least one of the sets 1A  and 2A  is called the union 
of 1A  and 2A , indicated by writing 21 AA ∪ .  The union of several sets, …,,, 321 AAA  is the 
set of all elements that belong to at least one of the several sets, denoted by "∪∪∪ 321 AAA  
or by kAAAA ∪∪∪∪ "321  if a finite number k of sets is involved. 

The set of all elements that belong to each of the sets 1A  and 2A  is called the intersection of 

1A  and 2A , indicated by writing 21 AA ∩ .  The intersection of several sets, …,,, 321 AAA  is 
the set of all elements that belong to each of the several sets, denoted by "∩∩∩ 321 AAA  or 
by kAAAA ∩∩∩∩ "321  if a finite number k of sets is involved. 

The set that consists of all elements of S that are not elements of A is called the complement of 
A, denoted by Ac.  In particular, ∅=cS .  Given SA ⊂ , ∅=∩ cAA , SAA c =∪ , 

ASA =∩ , SSA =∪ , and AA cc =)( . 

Commutative Law:  ABBA ∪=∪ ;  ABBA ∩=∩ . 

Associate Law:  )()( CBACBA ∪∪=∪∪ ; )()( CBACBA ∩∩=∩∩ . 

Distributive Law:  )()()( CBCACBA ∩∪∩=∩∪ ;   
)()()( CBCACBA ∪∩∪=∪∩ . 
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An event is a subset of the sample space S.  If A is an event, we say that A has occurred if it 
contains the outcome that occurred.  Two events 1A  and 2A  are called mutually exclusive if 

∅=∩ 21 AA .   

Example 2.2-1:  If the experiment consists of flipping two coins, then the sample space 
consists of the following four points:  )},(),,(),,(),,{( TTHTTHHHS = .  If A is the event that 
a head appears on the first coin, then )},(),,{( THHHA =  and Ac )},(),,{( TTHT= .   

Example 2.2-2:  If the experiment consists of tossing one die, then the sample space consists 
of the 6 points:  }6,5,4,3,2,1{=S .  If A is the event that the die appears an even number, then 

}6,4,2{=A  and Ac }5,3,1{= .   

2.3  Probability 

One possible way of defining the probability of an event is in terms of its relative frequency.  
Suppose that an experiment, whose sample space is S, is repeatedly performed under exactly the 
same conditions.  For each event A of the sample space S, we define #(A) to be the number of 
times in the first n repetitions of the experiment that the event A occurs.  Then )(AP , the 
probability of the event A, is defined by 

n
AAP

n

)(#lim)(
∞→

= . 

How do we know that nA)(#  will converge to some constant limiting value that will be the 
same for each possible sequence of repetitions of the experiment?  One way is that the 
convergence of nA)(#  to a constant limiting value is an assumption, or an axiom, of the system.  
However, it seems to be a very complex assumption and does not at all seem to be a prior evident 
that it need be the case.  In fact it is more reasonable to assume a set of simpler and more 
self-evidence axioms about probability and then attempt to prove that such a constant limiting 
frequency does in some sense exist.  This latter approach is the modern axiomatic approach to 
probability theory that we shall adopt. 

For a given experiment, S denotes the sample space and …,,, 321 AAA represent possible 
events.  We assume that a number )(AP , called the probability of A, satisfies the following three 
axioms: 

(Axiom 1) 0)( ≥AP  for every A; 

(Axiom 2) 1)( =SP ; 
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Example 2.3-1:  Consider an experiment to toss a fair coin.  If we assume that a head is 
equally to appear as a tail, then we would have 2/1})({})({ == TPHP .   

Example 2.3-2:  If a die is rolled and we suppose that all six sides are equally likely to appear, 
then we would have 6/1})6({})5({})4({})3({})2({})1({ ====== PPPPPP .  From 
Axiom 3 it would thus follow that the probability of rolling an even number would equal  

2/1})6({})4({})2({})6,4,2({ =++= PPPP .   

In fact, using these axioms we shall be able to prove that if an experiment is repeated over and 
over again then, with probability 1, the proportion of times during which any specified event A 
occurs will equal )(AP .  This result is known as the strong law of large numbers. 

Some Properties of Probability: 

(1) For each SA ⊂ , )(1)( cAPAP −= . 

Proof:  Since SAA c =∪  and ∅=∩ cAA , )()()()(1 cc APAPAAPSP +=∪== .   

(2) The probability of the null set is zero; that is 0)( =∅P . 

Proof:  Since Sc =∅ , 0)(1)( =−=∅ SPP .   

(3) If A and B are subsets of S such that BA ⊂ , than )()( BPAP ≤ . 

Proof:  Since BA ⊂ , )( BAAB c ∩∪=  and ∅=∩∩ )( BAA c .  We have 

)()()( BAPAPBP c ∩+= .  Because 0)( ≥∩ BAP c , )()( APBP ≥ .   

(4) For each SA ⊂ , 1)(0 ≤≤ AP . 

Proof:  Since SA ⊂⊂∅ , 1)()()(0 =≤≤∅= SPAPP .   

(5) (The Additive Law of Probability)  If A and B are subsets of S, then 
)()()()( BAPBPAPBAP ∩−+=∪ . 

Proof:  Note that )( BAABA c ∩∪=∪  and )()( BABAB c ∩∪∩= . 
Since ∅=∩∩ )( BAA c  and ∅=∩∩∩ )()( BABA c , 

)()()( BAAPBAP c ∩+=∪  and )()()( BAPBAPBP c ∩+∩= . 
Replace )( BAP c ∩  by )()( BAPBP ∩− .   
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(6) If A, B, and C are subsets of S, then 

)()()()()()()()( CBAPCBPCAPBAPCPBPAPCBAP ∩∩+∩−∩−∩−++=∪∪  
Proof:  Omitted.  
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∞

=

∞

=
≤⎟

⎠
⎞

⎜
⎝
⎛

11
)(

i
i

i
i APAP ∪ .  (Boole’s Inequality) 

Proof:  Let 11 AB = , cAAB 122 ∩= , and in general 
c

i

j
jii AAB ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∩=

−

=
∪

1

1
.  It follows that 

∪∪
∞

=

∞

=
=

11 i
i

i
i BA  and …,,, 321 BBB  are mutually exclusive.  Since ii AB ⊂ , )()( ii APBP ≤ .  

Hence, ∑∑
∞

=

∞

=

∞

=

∞

=
≤=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

1111
)()(

i
i

i
i

i
i

i
i APBPBPAP ∪∪ .  A similar result holds for finite 

unions, i.e., )()()()( 2121 kk APAPAPAAAP +++≤∪∪∪ "" .   
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Thus far we have interpreted the probability of an event of a given experiment as being a 
measure of how frequency the event will occur when the experiment is continually repeated.  
However, there are also other uses of the term probability.  Probability can be interpreted as a 
measure of the individual’s belief.  Furthermore, it seems logic to suppose that a “measure of 
belief” should satisfy all of the axioms of probability. 

2.4  Conditional Probability 

A major objective of probability modeling is to determine how likely it is that an event A will 
occur when a certain experiment is performed.  However, there are numerous cases in which the 
probability assigned to A will be affected by knowledge of the occurrence or nonoccurrence of 
another event B.  In such an example, we will use the terminology “conditional probability of A 
given B.”  The notation )|( BAP  will be used to distinguish between this new concept and 
ordinary probability )(AP . 

 We consider only those outcomes of the random experiment that are elements of B; in essence, 
we take B to be a sample space, called the reduced sample space.  Since B is now the sample 
space, the only elements of A that concern us are those, if any, that are also elements of B, that is, 
the elements of BA ∩ .  It seems desirable, then, to define the symbol )|( BAP  in such a way 
that     1)|( =BBP  and )|()|( BBAPBAP ∩= . 
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Moreover, from a relative frequency point of view, it would seem logically inconsistent if we did 
not require that the ratio of the probabilities of the events BA ∩  and B , relative to the space B , 
be the same as the ratio of the probabilities of these events of these events relative to the space S; 
that is, we should have  

)(
)(
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=
∩ . 

Hence, we have the following suitable definition of conditional probability of A given B )|( BAP . 

Definition 2.4-1:  The conditional probability of an event A, given the event B, is defined by 

)(
)()|(

BP
BAPBAP ∩

= provided 0)( ≠BP .   

Moreover, we have  

(1) 0)|( ≥BAP . 

(2) "" ++=∪∪ )|()|()|( 2121 BAPBAPBAAP , provided ",, 21 AA  are mutually 
exclusive sets. 

(3) 1)|( =BBP . 

Note that relative the reduced sample space B , conditional probabilities defined by above 
satisfy the original definition of probability, and thus conditional probabilities enjoy all the usual 
properties of probability on the reduced sample space. 

Example 2.4-1:  A hand of 5 cards is to be dealt at random and without replacement from an 
ordinary deck of 52 playing cards.  The conditional probability of an all-spade hand (A), relative to 
the hypothesis that there are at least 4 spades in the hand (B), is, since ABA =∩ , 
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Theorem 2.4-1 (The Multiplicative Law of Probability):  For any events A and B, 

)|()()|()()( BAPBPABPAPBAP ==∩ .   

Example 2.4-2:  A bowl contains eight chips.  Three of the chips are red and the remaining 
five are blue.  Two chips are to be drawn successively, at random and without replacement.  We 
want to compute the probability that the first draw results in a red chip (B) and the second draw 
results in a blue chip (A).  It is reasonable to assign the following probabilities: 
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8/3)( =BP   and  7/5)|( =BAP . 

Thus, under these assignments, we have 56/15)7/5)(8/3()|()()( ===∩ BAPBPBAP .   

 Definition 2.4-2:  For some positive integer k, let the sets kAAA ,,, 21 …  be such that  

(1) (Mutually Exhaustive) kAAAS ∪∪∪= "21 . 

(2) (Mutually Exclusive) jiAA ji ≠∅=∩ for . 

Then the collection of sets },,,{ 21 kAAA …  is said to be a partition of S.   

 Note that if B is any subset of S and },,,{ 21 kAAA …  is a partition of S, B can be decomposed 
as follows:  )()()( 21 kABABABB ∩∪∪∩∪∩= " . 

 Theorem 2.4-2 (Total Probability):  Suppose that kAAA ,,, 21 …  is a partition of S such 
that 0)( >iAP , ki ,,2,1for …= .  Then for any event B, 

∑
=

=
k

i
ii ABPAPBP

1
)|()()( . 

Proof:  Since the events BABABA k ∩∩∩ ,,, 21 …  are mutually exclusive, it follows that 

∑
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i
iABPBP

1
)()(  

and the theorem results from applying the Multiplicative Law of Probability to each term in this 
summation.   

 Theorem 2.4-3 (Bayes’ Rule):  Suppose that kAAA ,,, 21 …  is a partition of S such that 
0)( >iAP , for ki ,,2,1for …= .  Then for any event B 
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Proof:  from the definition of the conditional probability, and the Multiplicative Theorem, we have 
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The theorem follows by replacing the denominator with the total probability ∑
=

k

i
ii ABPAP

1
)|()( .  

Example 2.4-3:  In a certain factory, machine I, II, and III are all producing springs of the 
same length.  Of their production, machine I, II, and III produce 2, 1, and 3% defective springs, 
respectively.  Of the total production of springs in the factory, machine I produces 35%, machine II 
produces 25%, and machine III produces 40%.  If one spring is selected at random from the total 
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springs produced in a day, the probability that it is defective, in an obvious notation, equals 

)III|()III()II|()II(I)|()I()( DPPDPPDPPDP ++=  

0215.003.04.001.025.002.035.0 =×+×+×= . 

If the selected spring is defective, the conditional probability that it was produced by machine III is, 
by Bayes’ rule,  

215
120

0215.0
03.04.0

)(
)III|()III()|III( =

×
==

DP
DPPDP  

Note that I, II, and III are mutually exclusive and exhaustive events.   

 Example 2.4-4:  In answering a question on a multiple-choice test, a student either knows the 
answer or guess.  Let p be the probability that the student knows the answer and p−1  the 
probability that the student guesses.  Assume that a student who guesses at the answer will be 
correct with probability m1 , where m is the number of multiple-choice alternatives.  What is the 
conditional probability that a student knew the answer to a question, given that he or she answered 
it correctly? 

Solution:  Let C and K denote, respectively, the events that the student answers the question 
correctly and the events that he or she actually knows the answer.  Now  
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Thus, for example, if m = 5, p = 0.5, then the probability that a student knew the answer to a 
question he or she correctly answered is 6/5 .   

2.5  Independence 

 Definition 2.5-1:  Two events A and B are called independent events if 

)()()( BPAPBAP =∩ . 
Otherwise, A and B are called dependent events.   

 Example 2.5-1:  A card is selected at random from an ordinary deck of 52 playing cards.  If 
E is the event that the selected card is an ace and F is the event that it is spade, then E and F are 
independent.  This follows because 521)( =∩ FEP , whereas 524)( =EP  and 

5213)( =FP .   

 Theorem 2.5-1:  If A and B are events such that 0)( >AP  and 0)( >BP , then A and B are 
independent if and only if either of the following holds: 

)()|( APBAP =    )()|( BPABP = .   

Note that some textbooks use the Theorem 2.5-1 as the definition of independent events.  
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There is often confusion between the concepts of independent events and mutually exclusive events.  
Actually, they are quite different notions, and perhaps this is seen best by comparisons involving 
conditional probabilities.  Specifically, if A and B are mutually exclusive, then 

0)|()|( == ABPBAP , whereas for independent non-null events the conditional probabilities 
are nonzero as noted by Theorem 2.5-1.  In other words, the property of being mutually exclusive 
involves a very strong form of dependence, since, for non-null events, the occurrence of one event 
precludes the occurrence of the other event. 

Theorem 2.5-2:  Two events A and B are independent if and only if the following pairs of 
events are also independent: 

(1)    and  cBA . 

(2)    and  BAc . 

(3)    and  cc BA . 

Proof:  Left as an exercise.   

Definition 2.5-2:  The k events kAAA ,,, 21 …  are said to be independent or mutually 
independent if for every j = 2, 3, …, k and every subset of distinct indices riii ,,, 21 … , 

)()()()(
2121 rr iiiiii APAPAPAAAP "" =∩∩∩ .   

Suppose    and  ,, CBA  are three mutually independent events, according to the definition of 
mutually independent events, it is not sufficient simply to verify pair-wise independence.  It would 
be necessary to verify )()()( BPAPBAP =∩ , )()()( CPAPCAP =∩ , 

)()()( CPBPCBP =∩ , and also )()()()( CPBPAPCBAP =∩∩ . 

Example 2.5-2:  Three events that are pair-wise independent but not independent 

Consider the tossing of a coin twice, and define the three events, A, B, and C, as follows: 

A is “head on the first toss.” 

B is “heads on the second toss.” 

C is “exactly one head and one tail (in either order) in the two tosses.” 

Then we have  
5.0)()()( === CPBPAP  

and 5.05.025.0)()()( ×==∩=∩=∩ ACPCBPBAP . 

It follows that any two of the events are pair-wise independent.  However, since the three events 
cannot all occur simultaneously, we have 

)()()(810)( CPBPAPCBAP =≠=∩∩ . 
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Therefore the three events, A, B, and C, are not independent.   

Example 2.5-3:  Two independent events for which the conditional probability of A 
given B is not equal to the probability of A. 

This surprising but trivial example is possible due to the fact that the conditional probability 
)|( BAP  is undefined when 0)( =BP  and so cannot be equal to )(AP .  A concrete example is 

provided by the choice SA = , the entire sample space, and ∅=B .  They are independent 
because  

)()(0)()( BPAPPBAP ==∅=∩ . 

However, )|()( BAPAP ≠  because this conditional probability is not defined.   

 Example 2.5-4:  Independent trials, consisting of rolling a pair of fair dice, are performed.  
What is the probability that an outcome of 5 appears before an outcome of 7 when the outcome of a 
roll is the sum of the dice? 

Solution:  If we let nE  denote the event that no 5 or 7 appears on the first 1−n  trials and a 5 
appears on the nth trial, then the desired probability is  

∑
∞

=

∞

=
=⎟

⎠
⎞

⎜
⎝
⎛

11
)(

n
n

n
n EPEP ∪ . 

Now, since P{5 on any trial} = 4/36 and P{7 on any trial} = 6/36, we obtain, by the independence 
of trials  

( ) ( )36436101)( 1−−= n
nEP  

and thus 
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 This result may also have been obtained by using conditional probabilities.  If we let E be the 
event that a 5 occurs before a 7, then we can obtain the desired probability, P(E), by conditioning on 
the first trial, as follows:  Let F be the event that the first trial results in a 5; let G be the event that 
it results in a 7; and let H be the event that the first trial results in neither a 5 nor a 7.  Since 

( ) ( ) ( )HEGEFEE ∩∪∩∪∩= , we have 

( ) ( ) ( )HEPGEPFEPEP ∩+∩+∩=)(  

)|()()|()()|()( HEPHPGEPGPFEPFP ++=  

However, 

1)|( =FEP  
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0)|( =GEP  

)()|( EPHEP = . 

The first two equalities are obvious.  The third follows because, if the first outcome results in 
neither a 5 nor a 7, then at that point the situation is exactly as when the problem first started; 
namely, the experimenter will continually roll a pair of fair dice until either a 5 or 7 appears.  
Furthermore, the trials are independent; therefore, the outcome of the first trial will have no effect 
on subsequent rolls of the dice.  Since  

36
4)( =FP  

36
6)( =GP  

36
26)( =HP , 

we see that  
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⎛+= EPEP . 

 Note that the answer is quite intuitive.  That is, since a 5 occur on any roll with probability 
4/36 and a 7 with probability 6/36, it seems intuitive that the odds that a 5 appears before a 7 should 
be 6 to 4 against.  The probability should be 4/10, as indeed it is. 

 The same argument shows that if E and F are mutually exclusive events of an experiment, then, 
when independent trials of this experiment are performed, the E will occur before the event F with 
probability 

     
)()(

)(
FPEP

EP
+

. 


