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Chapter 111 Random Variables

3.1 Random variables

A sample space S may be difficult to describe if the elements of Sare not numbers.  We shall
discuss how we can use a rule by which an element s of Smay be associated with a number x.

Definition 3.1-1: Given a random experiment with a sample space S, a function X that
assigns to each element s in S one and only one real number X(s) = x is caled a random

variable. The space of X is the set of real numbers {x: x = X(s), s € S}, where s e S means
theelement sbelongstothesetS A

Example 3.1-1: In example 2.3-1, we had the sample space S={H,T}. Let X be a
function defined on Ssuchthat X(H) =1 and X(T) = 0. ThusXisarea-function that has the
sample space S as its domain and the space of real numbers {x :x =0, 1} asitsrange. B

Note that it may be that the set S has elements that are themselves real numbers. In such
instance we could write X (s) = s sothat X istheidentity function and the space of Xisaso S.

Example 3.1-2: In example 2.3-2, the sample space is S={1, 2,3,4,56;. For each
se S,let X(s) =s. Thespaceof therandom variable Xisthen {1, 2, 3,4,5,6;. B

If we want to find the probabilities associated with events described in terms of X, we use the
probabilities of those events in the original space Sif they are known. For instance,
Pla< X <b)=P{s:se S and a< X(s)<b}.
The probabilities are induced on the points of the space of X by the probabilities assigned to
outcomes of the sample space S through the function X. Hence, the probability P(X = Xx) is
often called an_.induced probability.

Example 3.1-3: In example 2.3-1, we associate a probability of 1/2 for each outcome,
then, forexample, P(X =) =P(X =0)=1/2. A&

Example 3.1-4: Three balls are to be randomly selected without replacement from an urn
containing 20 balls numbered 1 through 20. If we bet that at least one of the drawn balls has a
number as large as or larger than 17, what is the probability that we win the bet?

Solution: Let X denote the largest number selected. Then X is a random variable taking on one

20
of the values 3, 4,..., 20. Furthermore, if we suppose that each of the ( 3 ] possible selectionsis

== J)[2) imaam

equally likely to occur, then



Mathematical Statistics 30

khkkkhkkkkkkhhkkhkkhhkkhhkkhkhkkhhhkkhhkkhkhkkhhhkkhhhkkhhkkhhkkhhkkkhhhkhhhkhhkkhkhhhkhhhkhhkhhhkhhhkhhkkhhhkkhhhkhhkhhhkkhhhkhhkkhhhkkhhhkkhhhkhhkkhhkhkdkx*x

The above equation follows because the number of the selections that result in the event {X = i}
is just the number of selections that result in ball numbered i and two of the balls numbered 1

1\i-1
through i —1 being chosen. As there are clearly (J( 5 ] such selections, we obtain the

probabilities expressed in above equation.  From this equation we see that

P{X = 20} = (129J / (230]: 2% =0.15

18) /(20

P{X =19} = _ o oy
2)/\3) 380
17\ /(20

P{X =18} = ~ 34 _ o110
2)/(3) 285
16) /(20

P{X =17} = _ 2 _0105
2)/3) 19

Hence, asthe event {X > 17} isthe union of the disioint (mutually exclusive) events {X =i},i=
17, 18, 19, 20, it follows that the probability of our winning the bet is given by

P{X >17} = 0.105 + 0.119 + 0.134 + 0.15 = 0.508. O

There are two major difficulties here:

(1) Inmany practical situations the probabilities assigned to the events A of the sample space Sare
unknown.

(2) Sincethere are many ways of defining afunction X on S, which function do we want to use?

In considering (1), we need, through repeated observations (called sampling), to estimate these
probabilities or percentages. One obvious way of estimating these is by use of the relative
frequency after a number of observations. If additional assumptions can be made, we will study,
in this course, other ways of estimating probabilities. It is this latter aspect with which
mathematical statisticsis concerned. That is, if we assume certain models, we find that the theory
of statistics can explain how best to draw conclusions or make predictions.

For (2), statisticians try to determine what measurement (or measurements) should be taken on
an outcome; that is, how best do we “mathematize” the outcome? These measurement problems
are most difficult and can only be answered by getting involved in a practica project.
Nevertheless, in many instances it is clear exactly what function X the experimenter wants to define
on the sample space. For example, the die game in Example 2.3-2 is concerned about the number
of the spot, say X, which isup onthedie.

Definition 3.1-2: A random variable X is said to be discrete if it can assume only a finite or
countably infinite’ number of distinct values. H

1 A set of elements is countably infinite if the elements in the set can be put into one-to-one correspondence with the
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Definition 3.1-3:  The probability that X takes on the value x, P(X = x), is the defined as
the sum of the probabilities of all sample pointsin Sthat are assigned thevaluex. H

For arandom variable X of the discrete type, the induced probability P(X = X) isfrequently
denoted by f (x), and thisfunction f(x) iscalled the discrete probability density function (pdf).
Note that some authors refer to f(x) as the probability function (pf), the frequency function, or
the probability mass function (pmf). We will use the terminology pmf in this course.

Example 3.1-5: A supervisor in a manufacturing plant has three men and three women
working for him. He wants to choose two workers for a special job. Not wishing to show any
biasesin his selection, he decides to select the two workers a random.  Let X denote the number of
women in hisselection.  Find the probability distribution for X.

: . .. (6 .
Solution:  The supervisor can select two workers from six in (ZJ =15 ways. Hence Scontains

15 sample points, which we assume to be equally likely because random sampling was employed.
Thus P(E;) = 2/15, fori=1,2,...,15. The value for X that have nonzero probability are O, 1,

3)\(3 3)(3
and 2. The number of ways of selecting X = 0 women is (0](2] Thus there are (0](2] =3

sample pointsin the event X =0, and

o)
F(0) = P(X =0) =202/ _3 1

15 15 5
Similarly,
N
fmzpmznzlmlzézg
2l
uazmxzazzwozézé_

Table or histogram can represent the above results, but the most concise method of representing
discrete probability distributionsis by means of aformula. The formulafor f(x) can be written as

e
XN\2-Xx
f(x) =~—~—+«—=,
(x) 5

2
Notice that the probabilities associated with al distinct value of a discrete random variable must
sumtoone. H

x=0,1, 2

positive integers.
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Theorem 3.1-1: A function f(x) isapmf if and only if it satisfies both of the following
properties for at most a countably infinite set of real values xq, X,,---:
1. 0<f(x)<1 for al x;.

2. }:dl&f(xg =1.
Proof: 0< f(x) <1 follows from the fact that the value of a discrete pmf is a probability and
must be nonnegative.  Since X, X,,--- represent all possible values of X, the events

[X =x],[X = X,],--- congtitute an exhaustive partition of the sasmple space. Thus,

Zallxi f(xi):zanxi PIX=x]=1 A

Definition 3.1-4: The cumulative distribution function (CDF), or simply referred to as the
distribution function, of adiscrete random variable X is defined for any real x by

F)=P(X<x)=> f(t). B
t<x
Example 3.1-6: The probability mass function of a random variable X is given by
f(x) = cﬂx/xl, x=0,1..., where Aissome positivevalue. Find P{X =0} and P{X > 2Z}.

Solution:  Since ) f(x) = 1, we have that
x=0

00 X
czl—'zl
x:Ox
X

o0
implying, because e = Y A—I,that ce* =1 or c=e?*. Hence
x=0 X

P(X =0 =e*2°/0 =¢e".
PIX>2=1-PX=0-P(X = -P[X=2=1-e%-e* - 1%*/2.
The cumulative distribution function F(-) canbe expressed intermsof f () by
F@= Y f(x, a=0,1,2,... 0O

al x<a

Definition 3.1-5: A random variable X is caled a continuous random variable if there is a
function f(x), called the probability density function (pdf) of X, such that the CDF can be

represented as
F@p{;fmm.n
The above defining property provides a way to derive the CDF when the pdf is given, and it

follows by the Fundamental Theorem of Calculus that the pdf can be obtained from the CDF by
differentiation. Specifically,
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(0= L F) = F'(¥)
dx
whenever the derivative exists.

Theorem 3.1-2: A function f(x) is a pdf for some continuous random variable X if and
only if it satisfies the properties
1. f(x)>0 for al real x.

2 jio f(x)=1. O

Propertiesof aCDF F(X):

(@ O0< F(X) <1 since F(x) isaprobability.

(b) F(X) isanon-decreasing function of x. For instance, if a < b, then
{x:x<bl={x:x<alu{x:a<x<b} axd P(X <b)=P(X <a)+P@a< X <h).
Thatis, F(b) - F(a) = P(a< X <b) > 0.

(c) From the proof of (b), itisobservedthat if a < b,then P(a< x<b) =F(b)- F(a).

(d) lim F(x) =0 and lim F(x) =1 becausethe set {x: XSOO} istheentire
X— 00

X—>—0o0

one-dimensional space and theset {x : x < —wo} isthenull set.

(e) F(x) iscontinuousto theright at each point x.

(f) If Xisarandom variable of the discrete type, then F(x) isastep function, and the height of
astepat x, x € R, equalsthe probability P(X = X).

(g) If Xis a continuous random variable, then F(x) is a continuous function. The probability
P(a < x < b) isthe area bounded by the graph of f(X), the x-axis, and the lines x = aand
x = b. Furthermore, the probability at any particular point is zero.

Example 3.1-7: Suppose that X is a continuous random variable whose probability density
function is given by

_ 2
F(x) = c(4x — 2x9) O<x<.2.
0 otherwise

(@ What isthevauec?
(b) Find P{X >1}?

Solution:  Since f is a probability density function, we must have that [ f(x)dx=1, implying

2x3 x=2

2
that Cjo (4x — 2x%)dx = 1. Hence, C{sz - ?} 3

=1 =c=-.
8

x=0
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P{X > 1T = (3/8)[12(4x _ 2x%)dx = 2.
The cumulative distribution function F is given by

F(X) = j_xoo f(t)dt = jox(a/s)(4t ~ 2t?)dt = (3/8)(2x2 - (2x3/3)), 0<x<2 O

Example 3.1-8: Thedistribution function of the random variable Y is given by

0 y<O0
yl2 0<y<l1
F(y) =+ 2/3 1<y<?2
11/12 2<y<3
1 3<y.

A graphof F(y) ispresentedin Figure 3-1.

F(y)

1 F .
11/12- ————o
2/3- -
1/2F 2

| | |

1 2 3
Figure 3-1 Graph of F (y)

Compute P{Y <3, P{Y =1}, P{Y > 05 ,and P{2<Y < 4}.

n— o n n— o0 n 1

Solution:  P{Y <3 = lim P{Y <3- 1} = |lim F(S— EJ _ 1

=2
1
2

ol

PIY =1 =PY <3} -P{(X <T = F(@) - lim F(l—%jz%—
P{Y > 05 =1- P{Y <05} =1- F(0.5) = 0.75.
P2<Y<4=F@4)-F(Q2=112. A

Example 3.1-9:  An Unbounded Density Function
Let the random variable X have the distribution function F(x) given by:
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0 if x <0
F(x) = {x¥2 if0<x<1
1 if x> 1.

Then X hasadensity function f(x) given by
1

f(X) =1 2x¥2
0 otherwise.

ifO<x<1

Note that f(x) is unbounded for x near zero. In fact, as x approaches zero by positive value,
f(x) tendstoward infinity slowly enough so that the density function still integrates to one. An
aternative example is the density of the chi-squared distribution with one degree of freedom. H

Definition 3.1-6: If 0 <p <1, al00 x pth percentile of the distribution of a random variable

Xisthe smallest value, x,, suchthat F(x,) > p. H

In essence, X, is the value such that 100 x p% of the population values are less than or equal to
Xp.  We can also think in terms of a proportion p rather than a percentage 100 x p of the population,
and x, is often referred to as apth quantile.  If X'is continuous, then X, is asolution to the equation

F(Xp) =p.

Example 3.1-10: Consider the distribution of lifetimes, X (in months), of a particular type of
component. We will assume that the CDF has the form

F(x) =1- exp% (x/3)2}, x>0
and zero otherwise. Themedian lifetimeis
m = 3- In(L- 05)]>° = 3/In2 = 2.498 months.

It is desired to find the time t such that 10% of the components fail before t. This is the 10%
percentile:

X010 = 3- In(L - 0.2)]°° = 3/~ In(0.9) = 0.974 months.

Thus, if the components are guaranteed for one month, slightly more than 10% will need to be
replaced. H

3.2 Mathematical Expectation

One of the most important concepts in probability theory is that of the mathematical
expectation of arandom variable.



Mathematical Statistics 38

khkkkhkkkkkkhhkkhkkhhkkhhkkhkhkkhhhkkhhkkhkhkkhhhkkhhhkkhhkkhhkkhhkkkhhhkhhhkhhkkhkhhhkhhhkhhkhhhkhhhkhhkkhhhkkhhhkhhkhhhkkhhhkhhkkhhhkkhhhkkhhhkhhkkhhkhkdkx*x

Definition 3.2-1: Let X be arandom variable having a pdf (or pmf) f(x), andlet u(X) be
afunction of X. Then the mathematical expectation of u(X), denoted by E[u(X)], is defined to

be Elu(x)] = ji)u(x) f (x) dx

if Xiisacontinuous type of random variable, or

E[u(X)] = > u(3) f (%)

X
if Xisadiscretetype of random variable. B
Remarks. The usua definition of E[u(X)] requires that the integral (or sum) converge
absolutely. That is, Ijom|u(x)| f()dx < oo (or D |u(x)| f(x) < o).
X

Theorem 3.2-1: Let X be a random variable having a pmf (or pdf) f(x). Mathematica
expectation E(-), if it exists, satisfies the following properties:
(@ |If cusaconstant, E(c) =c.
(b) If cisaconstant and uisafunction, E[cu(X)] = cE[u(X)].
(¢ If ¢, and c, areconstantsand u;, and u, arefunctions, then

Efeyus (X) + €U, (X)] = e E[u (X)] + ¢E[u, (X)].
Proof: First, we have for the proof of (a) that E(c) = > cf(x) = ¢d. f(X) =c.
Next, to prove (b), we seethat E[cu(X)] = > cu(x) f(x) = > u(x) f (x) = cE[u(X)].

Finally, the proof of (c) is given by
Elcyus(X) + cuy(X)] = Y [epus(x) + cu, ()] (%) = X cuy(x) (%) + Y coup () F(X)

X

By applying (b), we obtain E[cyu; (X) + c,u,(X)] = ¢, E[uy (X)] + ¢, E[u, (X)].

Property (c) can be extended to more than two terms by mathematical induction; that is, we
have

k k
(© E{Z ciui(X)} = 2. G E[u (X)].
i=1 i=1
Because of property (c)', mathematical expectation E(-) iscalled alinear or distributive operator.
o

Certain mathematical expectations, if they exist, have specia names and symbols to represent
them. Firgt, let u(X) = X, where X isarandom variable of the discrete type having apmf f (X).

Then E[X]=> xf(x).

If the discrete points of the space of positive probabilitiesare a;,a,,..., then



Mathematical Statistics 39

khkkkhkkkkkkhhkkhkkhhkkhhkkhkhkkhhhkkhhkkhkhkkhhhkkhhhkkhhkkhhkkhhkkkhhhkhhhkhhkkhkhhhkhhhkhhkhhhkhhhkhhkkhhhkkhhhkhhkhhhkkhhhkhhkkhhhkkhhhkkhhhkhhkkhhkhkdkx*x

E(X) =a,f(a) +a,f(a,) +a;f(ag) +--.

This sum of product is seen to be a “weighted average” of the values &;,a,,..., the “weight”
associated with each a being f(a). This suggests that we call E(X) the mean value of X

(or the mean value of the distribution). The mean value u of arandom variable X is defined, when
itexists,tobe u = E(X).

Another specia mathematical expectation is obtained by taking u(X) = (X - y)z. If Xisa
random variable of the discrete type having apmf f (x), then

E((X —)?) = X = w2 F00 = @~ ) F (@) + (@ — 1) f(ag) +---

where a;,a,,..., are the discrete points of the space of positive probabilities. This sum of

product may be interpreted as a “weighted average” of the squares of the deviations of the numbers
a,,a,,..., from the mean value u of those numbers where the “weight” associated with each

(a — p)? is f(a). Thismean value of the square of the deviation of X from its mean value u is
called the variance of X (or the variance of the distribution). The variance of X will be denoted by
o? = E((X - u)z), if it exists. The variance can be computed in another manner:

o? = E((X - 1)?) = E(X? = 2uX + u?) = E(X?) - 2uE(X) + p® = E(X?)- u2.
It frequently affords an easier way of computing the variance of X.

It is customary to call o (the positive square root of the variance) the standard deviation of X
(or the standard deviation of the distribution). The number o is sometimes interpreted as a
measure of the dispersion of the points of the space relative to the mean value u.  We note that if
the space contains only one point x for which f(x) > 0, then c=0.

We next define a third special mathematical expectation, called the moment generating
function of arandom variable X.

Definition 3.2-2:  If Xisarandom variable, the expected value
M (1) = E(e¥)

is called the moment generating function (MGF) of X if this expected value exists for all values of
t in some open interval containing O of theform —h <t < h forsomeh>0. H

It is evident that if we sett = 0, we have M(0) =1. The moment generating function is
unigue and completely determines the distribution of the random variable; thus, if two random
variables have the same moment generating function, they have the same distribution.  If adiscrete
random variable X hasapmf f(x) with support {b;,b,,...}, then
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tx thy thy
M(t) = > e f(x) = f(b)e™ + f(by)e™ + .
X

Hence, the coefficient of e is f(b)=P(X =0b). Thatis, if wewrite a moment generating

function of a discrete-type random variable X in the above form, the probability of any value of X,
say b, isthe coefficient of €™ .

Example 3.2-1: Let the moment generating function of X be defined by

M (t) I
15 15 15 15 15

Then, for example, the coefficient of e*' is 2/15. Thus f(2) = P(X = 2) = 2/15. Ingenerd,
we see that the pmf of Xis f(x) = x/15,x=1,2,3,4,5. O

Definition 3.2-3: Let X be a random variable and let r be a positive integer. If E(Xr)
exists, it is called the rth moment of the distribution about the origin.  In addition, the expectation

E((x b)) is called the rth moment of the distribution about b. 8

Theorem 3.2-2:  If the moment generating function of X exists, then

d"M(t)

E(X")= M (0) = -

} forallr=1, 2, 3,...
t=0

Proof: From the theory of mathematical analysis, it can be shown that the existence of M (t), for
—h<t<h, implies that derivatives of M(t) of all orders exists at t = O; moreover, it is
permissible to interchange of the differentiation and expectation operator. Thus,

PO M =[x,

if Xis of the continuous type, or

% S M) = 3 e (%)

if Xisof thediscretetype. Settingt =0, we havein either case
M'(0) = E(X) = u.

The second derivativeof M (t) is

M"(t) = j“; x2e™ f (x)dx or M) = 3 x2e*f (),

sotha M”"(0) = E(X?).

In generdl, if r is a positive integer, we have, by repeated differentiation with respect to t,
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MO @©) = E(X"). &

Notethat o2 = M"(0) — [M'(Q)2. Since M(t) generatesthe value of E(X'), it is called
the moment generating function.

When the moment generating function exists, derivatives of all ordersexistatt=0. Thusitis
possibleto represent M (t) as a Maclaurin’s series, namely,

ey L | 1 o £
M(t)=M(O)+M(O)i + M (0)5 + M (O)E + e

That is, if the Maclaurin’s series expansion of M (t) can be found, the rth moment of X, E(X r),

isthe coefficient of tr/r I. Or,if M(t) existsand the moments are given, we can frequently sum
the Maclaurin’s series to obtain the closed form of M (t). These points are illustrated in the next
two examples.

Example 3.2-2:  Suppose that the random variable X has the moment generating function

M (t) = é(e2t +et+1+e + eZt)

for al real t. Using the series expansion of €, the Maclaurin’s series of M (t) is easily found to

be M(t):1+M[ﬁj+m(ﬁj+...+w[iJ+...;
5 2 5 4 5 r!

herer iseven. Sincethe coefficient of t"/r! iszerowhenr isodd, we have

O) r::L3,5,...
E(Xr)z [ r]
AL+ 2 , =246,...
5
2
Inparticular, = E(X) =0 and o2 :¥_M2 =2. O

Example 3.2-3: Let the moment of X be defined by
E(x)=08 r=123...
The moment generating function of X isthen

0 r o ¢TI o ¢TI
M(t) = M(0) + Zo.e{t—lJ =1+ o.szt—I =02+ o.szt—I = 0.2¢"" +0.8¢".
r=1 r: r=1l" r=o0l:

Thus, P(X = 0) = 0.2 and P(X =1 =08. O

Result: Suppose that the moment generating function of X exists. Let R(t) = InM(t) and
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R (0) denotethekth derivativeof R(t) evaluated fort=0. Then

R®(0) = E(X) = u and R (0) = E(X?)- u? = 62,
Proof: RO MO _M©O _ E(X).
dt t=0 M(t) t=0 M(O)
d’Rt)| _ M'OM@® -M'OM'®)| MO -[M'©OQF _ .2 2
| vEm o M2(0) - E(X?) -[E(X) =02 A

Example 3.2-4: A random variable with infinite mean
Let X have the density function

f(x):{J/xz, x>1

0, otherwise.

Then the expected values of X is

E(X) = [, x1/x2)dx = . @

Example 3.2-5: A random variable whose mean does not exist
Let the continuous random variable X have the Cauchy distribution centered at the origin with
density given by
1

f(x) = , — 0 < X< 0.
) ﬂil+X2i

The mean of X isthen

0 X 1 2 *
E(X) = dx = —log(l+ x°)
I_OO 7T(1+ Xzi 2r —o0

and thisintegral does not exist since

[ (x)ax = [© —x(ix=. @

Example 3.2-6: A random variable whose first moment exists but no higher moments
exist
Let the random variable X have adensity given by

f(x)zgx*‘/z, 1< X< .

Then the expected value of X is
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[>e}

_ 3P Y2y ayl2®
E(X)_.zL_x dx = — 3x L 3.

However, for integer values of k> 1, we find that

E(X*) = §le xK%20x = _92 xk-32
2 k- 32

1

In fact, for this example the moment of order k dose exist, although it isinfinite. We may modify
the example dlightly to achieve a case where the higher moments would be of theform « — o« and
therefore would not exist. To do this, let the density have the same basic form but be symmetric
about zero:

g(x)zgx‘E’/z, 1<|X < oo.

More generally, the Student’s t-distribution with r + 1 degrees of freedom has moments of order O,
1, ..., r, but no higher momentsexist. &

Example 3.2-7: A random variable whose moment generating function does not exist
Suppose the random variable X has the Cauchy distribution with density given by
1

f(x) = , —0 < X< ®
o ﬂil+X2i

The integral
1

EE@X) = [ e dx
I—w ﬂil+ Xzi
is infinite for any t # 0O since e“‘/yr(1+ x2) is positive for — o < X <o and tends to «© as

X — . Thusthe moment generating function does not exist in thisexample. H

Example 3.2-8: A random variable, all of whose moment exist, but whose moment
generating function dose not exist
Existence (finiteness) of the moment generating function for some t > 0 implies that all moments
exist and are finite; however, the converse is false. Consider the lognormal distribution, which is
the distribution of Y = e* where X has a normal distribution. Suppose X has mean zero and
variance one, so that Y has the standard lognormal distribution. The moments of Y exist for al
ordersk=1, 2, 3,... since

cfv)- o) - ot [Teve - L[ exp[_ LS k_;}dx el )

However, the moment generating function does not exists sinceiif t > 0,
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E(etY) _ E[ek(ex)j _ (2;-)1/2 f‘;etex—xz/zdx

- 2 3 2
> #J‘O exp{t(ljt x+%+%} —X?}dx =
T

since the exponential term is a third-degree polynomial in x for which the x® term has a positive
coefficient; this exponential must then tend to oo as x — . Therefore the moment generating
function of Y doesnot exist. H

Remark. In more advanced course, we would not work with the moment generating function
since so many distributions do not have moment generating functions. Instead, we would let i

denote the imaginary unit, t an arbitrary real, and we would define ¢(t) = E(e”x). This

expectation exists for every distribution and it is caled the characteristic function of the
distribution. To see why ¢(t) exists for al rea t, we note, in the continuous case, that its

absolute value |(p(t)| = UOO ™ f (x)dx| < f ‘eitxf(x)‘d)(.

However, |f(x)| = f(X) since f(x) isnonnegativeand

‘ eltx

= |costx + isinty = Jeos? tx + sin? tx = 1.

Thus |(p(t)| = U_OO eitXf (X)dX

< fw\e”x f(9[x < rw f(x)dx = 1.

Every distribution has a unigue characteristic function; and to each characteristic function there
corresponds a unigue distribution of probability. If X has a distribution with characteristic

function ¢(t), then for instance, if E(X) and E(X?) exist, they are given, respectively, by

iE(X) = ¢'(0) and i°E(X?) = ¢"(0). It maywrite o(t) = M(it).

3.3 Chebyshev’s Inequality

Theorem 3.3-1 (Markov’s Inequality): If X is a random variable that takes only
nonnegative values, then for any valuea >0

P(X > a) < E(X).
a

Proof: We give aproof for the case where X is continuous with density f.

E(X) = j:xf () dx = joaxf (x)dx + j:xf (x)dx
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> ijr (x)dx

> j:af (x)dx = aff (x)dx = aP(X > a)

and theresultisproved. H

Theorem 3.3-2 (Chebyshev’s Inequality): If X is arandom variable with finite mean x and

variance o2, thenfor any valueb >0

(72

P(jX—u|zb)sb—.

Proof: Since (X — u)? isnonnegative random variable, we can apply Markov’s inequality (with
a = b?) to obtain

) E[(X - u)z]
<

PYX - 222

Butsince (X — u)* > b? ifandonlyif |X — 4 > b, wehave

E(X-p)?| &2
P(X — 1 >b)< - ] :ZZ

and the proof iscomplete. H

The importance of Markov’s and Chebyshev’s inequalities is that they enable us to derivative
bounds on probabilities when only the mean, or both the mean and the variance, of the probability
distribution are known. Of course, if the actual distribution were known, then the desired
probabilities could be exactly computed and we would not need to resort to bounds.

Example 3.3-1: Suppose that it is known that the number of items produced in a factory
during a week is arandom variable with mean 50.
(@ What can be said about the probability that this week’s production will exceed 75?
(b) If the variance of a week’s production is known to equal 25, then what can be said about the
probability that this week’s production will be between 40 and 60?

Solution: Let X be the number of items that will be produced in aweek:

. . E(X) 50 2
a) By Markov’s inequality, PIX>75)<—==—=—,
(& By Vv’s inequality. ( ) = T 7 3
o2 1
(b) By Chebyshev’s inequality P {X - 50| > 10} < T =g
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Hence, P{X - 50| < 10} > 1 - % = % o
Note that although Chebyshev’s inequality is valid for all distributions of the random variable
X, we cannot expect the bound on the probability to be very close to the actual probability in most

case.



