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Chapter IV  Discrete Distributions 

The probability models for random experiments that will be described in this and next chapters 
occur frequently in applications.  Continuous distributions will be presented in next chapter.  This 
chapter will introduce some discrete distributions, including Bernoulli distribution, binomial 
distribution, Poisson distribution, geometric distribution, negative binomial distribution, and 
hypergeometric distribution. 

4.1  Bernoulli Trials and Bernoulli Distributions 

On a single trial of an experiment, suppose that there are only two events of interest, say E  
and cE .  For example, E  and cE  could represent the occurrence of a “head” or a “tail” on a 
single coin toss, obtaining a “defective” or a “good” item when drawing a single item from a 
manufactured lot, or, in general, “success” or “failure” on a particular trial of an experiment.  
Suppose that E  occurs with probability )(EPp = , and consequently cE  occurs with 
probability pEPq c −== 1)( . 

A random variable, X, that assumes only the value 0 or 1 is known as a Bernoulli variable, and 
a performance of an experiment with only two types of outcomes is called a Bernoulli trial.  In 
particular, if an experiment can result only in “success” ( E ) or “failure” ( cE ), then the 
corresponding Bernoulli variable is 
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The pmf of X is given by )1()0( pqf −==  and pf =)1( .  The corresponding distribution is 
known as a Bernoulli distribution with the parameter p, and its pmf can be expressed as 
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Theorem 4.1-1:  If X is a random variable with a Bernoulli distribution, then 
p=µ , pq=2σ , and ∞<<∞−+= tqpetM t)(  
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4.2  Binomial Distribution 

Often it is possible to structure a more complicated experiment as a sequence of independent 
Bernoulli trials, where the quantity of interest is the number of successes on a certain numbers of 
trials.  In a sequence of n independent Bernoulli trials with probability of success p and 
probability of failure )1( pq −=  on each trial, let X represent the number of successes.  The 
discrete pmf of X, known as the binomial distribution and denoted by ),(~ pnBX , is given by 
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The quantities of n and p are called the parameters of the binomial distribution.  Note that by the 
binomial theorem, the probabilities sum to one; that is  
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Example 4.2-1:  It is known that screws produced by a certain company will be defective 
with probability 0.01 independently of each other.  The company sells the screws in package of 10 
and offers a money-back guarantee that at most 1 of the 10 screws is defective.  What proportion 
of packages sold must the company replace? 

Solution:  If X is the number of defective screws in a package, then X is a binomial random 
variable with parameters (10, 0.01).  Hence, the probability that a package will have to be replaced 
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Hence, only 0.4 percent of the package will have to be replaced.   

Summarizing, a binomial experiment satisfies the following properties: 
1. A Bernoulli (success-failure) experiment is performed n times. 
2. The trials are independent. 
3. The probability of success on each trial is a constant p; the probability of failure is 

pq −= 1 . 
4. The random variable X counts the number of successes in the n trials. 

Theorem 4.2-1:  If X is a random variable with a binomial distribution with parameter n and 
p, ),(~ pnBX , then 
     np=µ , npq=2σ , and ∞<<∞−+= tqpetM nt )()(  
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Example 4.2-2:  A communication system consists of n components each of which will, 
independently, function with probability p.  The total system will be able to operate effectively if 
at least one-half of its components function.  For what value of p is a 5-component system more 
likely to operate effectively than 3-component system? 

Solution:  As the number of functioning components is a binomial random variable with 
parameters (n, p), it follows that the probability that a 5-component system will be effective is 
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whereas the corresponding probability for a 3-component system is  
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Hence, the 5-component system is better if  
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4.3  Geometric Distribution and Negative Binomial Distribution 

 We turn now to the problem of observing a sequence of Bernoulli trials until exactly r 
successes occur, where r is a fixed positive integer.  Let the random variable X denote the number 
of trials needed to observe the rth success.  That is, X is the trial number on which the rth success 
is observed.  By the multiplication rule of probabilities, the pmf of X, say )(xf , equals the 
product of the probability  
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of obtaining exactly 1−r  successes in the first 1−x  trials and the probability p of a success on 
the r trial.  Thus the pmf of X is   
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We say that X has a negative binomial distribution, denoted by ),(NB~ prX  with the 
parameters r and p. 

We first discuss this problem when r = 1.  That is, consider a sequence of Bernoulli trials with 
probability p of success.  This sequence is observed until the first success occurs.  We say that X 
has a geometric (Pascal) distribution, denoted by )(GEO~ pX , with the parameter p since the 
pmf consists of terms of a geometric series, namely 
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It can be verified that the probabilities sum to one, 1
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 Example 4.3-1:  Suppose that the probability of engine malfunction during any 1-hour period 
is p = 0.02.  Find the probability that a given engine will survive 2 hours. 

Solution:  Letting X denote the number of 1-hour intervals until until the first malfunction, we 
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Theorem 4.3-1:  If X is a random variable with a geometric distribution with parameter p, 
then 
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Proof:  To find the mean and the variance for the geometric distribution, we will use the following 
results about the sum and the first and second derivatives of a geometric series.  For 11 <<− r , 
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Theorem 4.3-2:  kqkXP => )( . 
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 Theorem 4.3-3:  No-Memory Property 

If )(GEO~ pX , then )()|( kXPjXkjXP >=>+>  where j and k are nonnegative 
integers. 

Proof:  Left as exercise. 

Example 4.3-2:  Consider the problem of obtaining a random ordering of the first n positive 
integers.  For example, suppose that we would like a random ordering of the first positive integers.  
We would obtain this random ordering by rolling a fair six-sided die.  The first cast of the die 
would give the first outcome in the random ordering.  To obtain the second number in the ordering, 
only five of the six possible outcomes are eligible.  After the first 1−k  positions have been 
filled with unique integers, the number of candidates for position k is 16 +− k  for k = 1, 2, 3, 4, 5, 
6.  The probability of selecting one of these eligible integers is ( ) 616 +−= kpk .  If kX  
denotes the number of trials needed to observe the first success (an integer that has not yet been 
selected), then kX  has a geometric distribution with kpp = . 

An interesting problem is to determine the average number of casts of the die to obtain a 
random ordering of 1, 2, 3, 4, 5, 6.  Let kX  equal the number of casts required to fill position k.  
If we let 654321 XXXXXXW +++++= , then W denotes the total number of casts 
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required.  So the average number of casts required is  
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Let us now turn to the negative binomial distribution.  The reason for calling this the negative 

binomial distribution is the following.  Consider ( ) rwwh −−= 1)( , the binomial )1( w−  with 

the negative exponent r− .  Using Maclaurin’s series expansion, we have 
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If we let x = k + r in the summation, then rxk −=  and  
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the summand of which is, except for the factor rp , the negative binomial probability when w = q.  

According the above formula, we obtain 
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Theorem 4.3-4:  If X is a random variable with a negative binomial distribution with 
parameters r and p, ),(NB~ prX , then 
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Proof:  To find the mean and variance, we will use the following derivatives of the series 
expansion of the negative binomial.  Let 
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Example 4.3-3:  Team A plays team B in a seven-game series.  That is, the series is over 
when either team wins four games.  For each game, P(A wins) = 0.6, and the games are assumed 
independent.  What is the probability that the series will end in exactly six games? 

Solution:  Let X be the number of games in the series.  Then )6.0,4(NB~X  if team A wins 
the series and )4.0,4(NB~X  if team B wins the series.  Hence, we have 
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The negative binomial problem is sometimes referred to as inverse binomial sampling.  
Suppose that ),(NB~ prX  and ),(B~ pnW .  It follows that  

)()( rWPnXP ≥=≤ . 
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That is, rW ≥  corresponding to the event of having r or more successes in n trials, and that 
means n or fewer trials will be needed to obtain the first r successes. 

Note that the number of experiments in the binomial experiment is a fixed number, while it is a 
random variable in both the geometric and the negative binomial distributions.  We summarize the 
characteristics of these three distributions in Table 4-1. 

Table 4-1 

 Binomial Dist. Geometric Dist. Negative Binomial Dist.

Type of Experiments Independent Bernoulli Trials with the Probability of Success p 

Number of Successes Random Variable Fixed Number (1) Fixed Number (r) 

Number of Experiments Fixed Number (n) Random Variable Random Variable 
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4.4  Poisson Distribution 

Some experiments result in counting the number of times particular events occur in given 
times or on given physical objects.  For example, we could count the number of phone calls 
arriving at a switchboard between 9 and 10 A.M., the number of flaws in 100 feet of wire, the 
number of customers that arrive at a ticket window between 12 noon and 2 P.M., or the number of 
defects in a 100-foot roll of aluminum screen that is 2 feet wide.  Each count can be looked upon 
as a random variable associated with an approximate Poisson process provided the condition in 
Definition 4-1 are satisfied. 

Definition 4.4-1:  Let the number of changes that occur in a given continuous interval be 
counted.  We have an approximate Poisson process with parameter λ > 0 if the following are 
satisfied: 
(i) The numbers of changes occurring in non-overlapping intervals are independent. 
(ii) The probability of exactly one change in a sufficiently short interval of length h is 

approximately λh. 
(iii) The probability of two or more changes in a sufficiently short interval is essentially zero.  

Remark In this definition, we have modified the usual requirements of a Poisson process by 
using the words approximate Poisson process and essentially in (ii) and (iii) in order to avoid some 
advanced mathematics.  Hence, we refer to this as the approximate Poisson process. 

Suppose that an experiment satisfies the three points of an approximate Poisson process.  Let 
X denote the number of changes in an interval of “length 1” (where “length 1” represents one unit 
of the quantity under consideration).  We would like to find an approximation for )( xXP = , 
where x is a nonnegative integer.  To achieve this, we partition the unit interval into n 
subintervals of equal length n1 .  If n is sufficiently large, we shall approximate the probability 
that x changes occur in this unit interval by finding the probability that one change occurs in each 
of exactly x of these n subintervals.  The probability of one occurring in any one subinterval of 
length n1  is approximately )1( nλ  by condition (ii),  

P(one change occurs in a subinterval) = )1( nλ . 

The probability of two or more changes in any one subinterval is essentially zero by condition (iii),  

P(more than one change occurs in a subinterval) = 0. 

Hence,   P(no changes occur in a subinterval) = )1(1 nλ− . 

Consider the occurrence or nonoccurrence of a change in each subinterval as a Bernoulli trial.  
By condition (i) we have a sequence of n Bernoulli trials with probability p approximate equal to 

)1( nλ .  Thus an approximation for )( xXP =  is given by the binomial probability 
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 The distribution of probability associated with this process has a special name.  We say that 
the random variable X has a Poisson distribution with the parameter λ > 0, denoted by 

)(POI~ λX , if its pmf is of form  

,
!

)(
x
exf

x λλ −

= x = 0, 1, 2, …. 

 It is easy to see that )(xf  enjoys the properties of a pmf since clearly 0)( ≥xf  and, from 
the Maclaurin’s series expansion of e 

λ, we have  
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The Poisson probability distribution was introduced by S. D. Poisson in 1837.  This random 
variable has a tremendous range of applications in diverse areas since it may be used as an 
approximation for a binomial random variable with parameters (n, p) when n is large and p is small 
enough so that np is of a moderate size.  In other words, if n independent trials, each of which 
results in a “success” with probability p, are performed, then, when n is large and p small enough to 
make np moderate, the number of successes occurring is approximately a Poisson random variable 
with parameter λ = np. 

Some examples of random variables that usually obey the Poisson probability law follow: 
1. The number of misprints on a page (or a group of pages) of a book. 
2. The number of people in a community living to 100 years of age. 
3. The number of wrong telephone numbers that a dialed in a day. 
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4. The number of package of dog biscuits sold in a particular store each day. 
5. The number of earthquakes occurring during some fixed time span. 
6. The number of wars per year. 
7. The number of death in a given period of time of the policyholders of a life insurance 

company. 

Example 4.4-1:  Suppose that the probability that an item produced by a certain machine will 
be defective is 0.1.  Find the probability that a sample of 10 items will contain at most 1 defective 
item. 

Solution:  The desired probability is 7361.0)9(.)1(.
1
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Poisson approximation yields the value 7358.011 ≈+ −− ee . 

Theorem 4.4-1:  If X is a random variable with a Poisson distribution with parameter λ, then 
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4.5  Hypergeometric Distribution 

Suppose a population or collection consists of a finite number of items, say N, and there are M 
items of type 1 and remaining MN −  items are of type 2.  Suppose that n items are drawn at 
random without replacement, and denote by X the number of items of type 1 that are drawn.  The 
discrete pmf of X , called the hypergeometric distribution with parameters n, M, and N and denoted 
by ),,(HYP~ NMnX , is given by 
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where x is a nonnegative integer subject to the restrictions nx ≤ , Mx ≤ , and MNxn −≤− .  
The underlying sample space is taken to be the collection of all subsets of size n, of which there are 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n
N

, and there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
xn
MN

x
M

 outcomes that correspond to the event [ ]xX = .  According 

to the Proposition 1-3, we have 
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 Example 4.5-1:  A purchaser of electrical components buys them in lots of size 10.  It is its 
policy to inspect 3 components randomly from a lot and to accept the lot only if all 3 are 
non-defective.  If 30 percent of the lots have 4 defective components and 70 percent have only 1, 
what proportion of lots does the purchaser reject? 

Solution:  Let A denote the event that the purchaser accepts a lot.  Now, 
( ) ( )107defective) 1 haslot |(103)defectives 4 haslot |()( APAPAP +=  
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 Theorem 4.5-1:  If ),,(HYP~ NMnX , then for each value x = 0, 1,…,n, and as ∞→N  
and ∞→M  with pNM → , a positive constant, 
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Proof:   
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 Example 4.5-2:  A lot of 1,000 parts is shipped to a company.  A sampling plan dictates that 
n = 100 parts are to be taken at random and without replacement and the lot accepted if no more 
two of these 100 parts are defective.  Here AC = 2 is usually called the acceptance number.  The 
operating characteristic curve  

)2()( ≤= XPpOC  
where p is the fraction defective in the lot, is really the sum of the three hypergeometric 
probabilities 
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where M = 1000 × p.  However we have seen that the hypergeometric distribution can be 
approximated by the binomial distribution, which in turn can be approximated by the Poisson 
distribution when n is large and p is small.  This exactly our situation since n = 100 and we are 
interested in value of p in the range 0.00 to 0.10.  Thus 
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 Theorem 4.5-2:  If ),,(HYP~ NMnX , then 
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We now make the change of variables 1−= xk  in the summation, and replace 
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4.6 Probability Generating Functions 

An important class of discrete random variables is one in which X represents a count and 
consequently takes integer values:  X =0, 1, 2,….  A Mathematical device useful in finding the 
probability distributions and other properties of integer-valued random variables is the probability 
generating function. 

Definition 4.6-1:  Let X be an integer-valued random variable for which ipiXP == )( , 
where i = 0, 1, 2,….  The probability generating function P(t) for X is defined to be 
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X tptptpptEtP  

For all values of t such that P(t) is finite.   

 The reason for calling P(t) a probability generating function is that the coefficient of it  in P(t) 
is the probability ip .  Repeated differentiation of P(t) yields factorial moments for the random 
variable X. 

 Definition 4.6-2:  The kth factorial moment for a random variable X is defined to be 

[ ] ( )( ) ( )[ ]121 +−−−= kXXXXEkµ  

where k is positive integer.   

 Note that [ ] µµ == )(1 XE .  The second factorial moment, [ ] )]1([2 −= XXEµ , was 

useful in finding the variance for binomial, geometric, and Poisson random variables. 

 Theorem 4.6-1:  If P(t) is the probability generating function for an integer-valued random 
variable, X, then the kth factorial moment of X is given by 
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it follows that 
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Setting t = 1 in each of these derivatives, we obtain 
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 Example 4.6-1:  Find the probability generating function for a geometric random variable.  
Then use P(t) to find the mean of a geometric random variable. 

Solution:  Note that 00 =p  since X cannot assume this value.  Then 
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 Since we already have the moment generating function to assist in finding the moments of a 
random variable, of what value is P(t)?  The answer is that it may be difficult to find M(t) but 
much easier to find P(t).  Thus P(t) provides an additional tool for finding the moments of a 
random variable.  It may or may not useful in a given situation. 

 Finding the moments of a random variable is not the major use of the probability generating 
function.  Its primary application is in deriving the probability function for other integer-valued 
random variables.   


