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Chapter V. Continuous Distributions

Continuous distributions are generally amenable to more elegant mathematical treatment than
are discrete distributions. This makes them especially useful as approximations to discrete
distributions. Continuous distributions are used in this way in most applications, both in the
construction of models and in applying statistical techniques. An essential property of a
continuous random variable is that there is zero probability that it takes any specified numerical
value, but in general a nonzero probability, calculable as a definite integral of a probability density
function that it takes avalue in specified (finite or infinite) intervals.

Some concepts that have great value for discrete distributions are much less valuable in the
discussion of continuous distributions, for example, probability generating functions and factorial
moments. On the other hand, standardization (use of the transformed variable to produce a
distribution with zero mean and unit standard deviation) is much more useful fro continuous
distributions.

51 Uniform Distribution

Suppose that a continuous random variable X can assume values only in a bounded interval,
say the open interval (a, b), and suppose that the pdf is constant, say f(Xx) =c over the interval.

Thisimplies ¢ = 1/(b - a), since 1= j:cdx =c(b—a). Thisspecia distribution is known as the

uniform distribution on the interval (a, b), denotedby X ~U(a,b). Thepdfis

f)=—1  a<x<b
b-a
and zero otherwise.

TheCDFof X ~U(a,b) hastheform

0 X< a
F(x) =12~ 2 a<x<b
b-a
1 b<x

Example 5.1-1: Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M.
That is, they arrive at 7, 7:15, 7:30, 7:45, and so on.  If apassenger arrives at the stop at atime that
is uniformly distributed between 7 and 7:30, find the probability that he waits (1) less than 5
minutes for abus. (2) More than 10 minutes for abus.

Solution: Let X denote the number of minutes past 7 A.M. that the passenger arrives at the stop.
Since X is a uniform random variable over the interval (0, 30), it follows that the passenger will
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have to wait less than 5 minutes if (and only if) he arrives between 7:10 and 7:15 or between 7:25
and 7:30. Hence the desired probability for (1) is

15 1 301 1
P(10< X <15) + P(25< X < 30) = lo%dx+.[25%dx: 5

Similarly, he would have to wait more than 10 minutes if he arrives between 7 and 7:05 or between
7:15 and 7:20, and so the probability for (2) is

5 20
P(O<X<5)+P(15<X<20):Iidx+J‘ Ix-1 o
030 15 30 3
Theorem 5.1-1: If X ~ U(a,b), then
th ta
a+b b - a)? € -e t£0
= , (72:( ) ' and M (t) = t(b—a)’ = Y,
2 12 L 0

b
b b 2 2 .2
Proot:  E(X) = [ xf (x)ax=[ X k=X _p-a® bra
a ab-a 2(b—a)‘a 2(b-a) 2

2 3 P 3 3 2 2
E(Xz):J'b X" gy X | _b"-a” b +ab+a
ab-a 3(b—a)\a 3(b-a) 3
2 2 2 2
o? = E[x?)- [E(OF = +2b+a —[b;aj - (blza) .
b alX ol |b elb _ ota
M (1) = E[e ):j dx for t=0. O

ab-a  t(b-a)| t(b-a)’

Perhaps a more important application of the uniform distribution occurs in the case of
computer simulation, which relies on the generation of “random number.” Random number
generators are functions in the computer language, or in some cases subroutines in programs, which
are designed to produce numbers that behave as if they were data from U(0,1) with CDF
F(X) = x forO<x<1. Wewill discussthisin Chapter VII.
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52 Exponential Distribution

When previously observing a process of the (approximate) Poisson type, we counted the
number of changes occurring in a given interval. This number was a discrete-type random
variable with a Poisson distribution.  But not only is the number of changes a random variable; the
waiting times between successive changes are also random variables. However, the latter are of
the continuous type, since each of them can assume any positive value. In particular, let W denote
the waiting time until the first change occurs when observing a Poisson process in which the mean
number of changesin the unit interval isA. Then Wis a continuous-type random variable, and we
proceed to find its distribution function.

Clearly, this waiting time is nonnegative; thus the distribution function F(w) =0, w < 0.
For w> 0,

F(w) = P(W < w) =1- P(W > w) =1 P(nochnagesin[0,w]) =1-&*",

since we previously discovered that e W equals the probability of no changes in an interval of
lengthw. Thus, when w > 0, the pdf of Wis given by

F'(w) = e = f(w).

We often let 2 =1/0 and say that the random variable X has an exponential distribution,
denoted by X ~ EXP(0), if its pdf is defined by

f(x):%e"w, 0< x <,

where the parameter 6 > 0. ItsCDFis F(x) =1-exp(- x/0), x>0.
It is easy to be verified that leexp(_—xjdx =1.
00 0

Theorem 5.2-1. If X ~ EXP(8), then
1 1
=0, 2 - 9% and M) = ——, t<-=.
H o ® =10t 0

oot 0= [ e o [ o S o

- [ Lo —X ax=—t o, t<=
1-0tJo g/1-0t) | 6/1-061) 1-0t’ 0
Let R(t) =InM(t) = —In(L-60t). Then

- (=0)
1- 0t

u=ROl_, =

t=0
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- 0(-9) _ 02

A= O
@-6t) -0

o? =R@)_, =
According to the Theorem 5.2-1, if A is the mean number of changes in the unit interval,
then 6 =1/4 isthe mean waiting time for the first change.

Example 5.2-1: Customers arrive in a certain shop according to an approximate Poisson
process at a mean rate of 20 per hour. What is the probability that the shopkeeper will have to wait
more than 5 minutes for the arrival of the first customer?

Solution: Let X denote the waiting time in minutes until the first customer arrives and note that
A =1/3 isthe expected number of arrives per minutes. Thus

0 :1 =3
A
and
1 - X
f(x):—exp(—j, 0< X< oo,
3 3
Hence,

P(X > 5) = I:%exp(_—;jdx _ exp(_?Sj — 0.189.

The median time until the first arrival is
m = -3In(0.5) = 2.079. O

Theorem 5.2-2 (memoryless property):
If X ~ EXP(9),then P(X >a+t|X >a)=P(X >t) forala>0andt>0.

P(X>a+tand X >a) P(X>a+t)
P(X > a) ~ P(X > a)
exp(- (a+1)/0)

= epl_ a0) =P(X>t). O

Proof: P(X >a+t|t>a)=
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5.3 Gamma and Chi-Squar e Distributions

In the (approximate) Poisson process with mean A, we have seen that the waiting time until
the first change has an exponential distribution. We now let W denote the waiting time until the
ath change occurs and find the distribution of W.

The distribution function of W, whenw > 0, is given by

F(w) = P(W < w) = 1- P(W > w) = 1 P(fewer than o changes occur in[0, w])

W)k e—/lw

a-1
—1_ Z(/IT (5.3.1)
k=0

since the number of changes in the interval [0, w] has a Poisson distribution with mean Aw.
Because W is a continuous-type random variable, F'(w) is equa to the pdf of W whenever this

derivative exists. We have, provided w > 0, that

k-1 k k-1 k
F'(w) = 2™ - —/lwzl:k(lW) A (/lvi\i)! /1} e -xwz{(/(llv) 1)|/1 _ (/lvl\i)! /1}

=M e M- (w4 _ we e
(o — 1! (o — 1! '

Of course, if w< 0O, then F(w) =0 and F'(w) = 0. A pdf of thisform is said to be one of the
gammatype, and the random variable Wis said to have agamma distribution.

Before determining the characteristics of the gamma distribution, let us consider the gamma
function for which the distribution isnamed. The gamma function is defined by

T(t) = j: xleXdx, t>0.

This integral is obviously positive for t > 0. If t > 1, integration of the gamma function of t by
partsyields

I(t) = (— xt‘le‘x) : + I:(t ~1)x!%e X dx = (t - 1)_[;>o x'~2e % dx

= (-1t -1).

For example, I'(6) = 5I'(5) and T'(3.5) = (25)I'(2.5). Whenever, t = n, a positive integer, we
have, by repeated application of TI'(t) = (t —DI'(t — 1), that

IrnN=0n-Yrn-)=mn-H(n-2)---QOI Q).
However,

rQ) :I:e‘xdx:l.
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Thus, when n is a positive integer, we have that
rmn) =(n-21
Let us now formally define the pdf of the gamma distribution and find its characteristics.

Definition 5.3-1: A random variable X is said to have agamma distribution with parameters
a >0 and 0 > 0,denotedby X ~ G(«,0), if and only if the density function of Xis

F(x) = — L x*lg X0 0O<x<w. O
I')0*

According to the Definition 5.3-1, W, the waiting time until the ath change in a Poisson
process, has a gamma distribution with parameters o and 6 = 1/A. By the change of variables
y = X/6 , it can be shown that

? 1 a1 X0 g, _ [P ya-laYgy —
.[oQaX e dx—Joy e Ydy =I'(a).

Hence, j f (x) dx J ( 1)0a X% Le™X¥0 dx = ﬁr(a) -
a

Example 5.3-1: Suppose that an average of 30 customers per hour arrive at a shop in
accordance with a Poisson process. That is, if a minute is our unit, then 2 =1/2. What is the

probability that the shopkeeper will wait more than 5 minutes before both of the first two customers
arrive?

Solution: If X denotes the waiting time in minutes until the second customer arrives, then X has a
gammadistributionwith @ =2 and 0 =1/A = 2. Hence,

o 1 1 ol _ 1 _ _x/2]®
P(X > 5) = .[5 WXZ 1e X/de = J5 er X/de = Z[(—Z)Xe X/2 —4e X/Z]S

- ge‘f’/z — 0.287.

We would also have used equation (5.3.1) with 1 =1/0 because « is an integer. From equation
(5.3.1) we have

P(X > 5) = Z(W) ZZ 5/2 = e‘5/2(1+ gj = ge‘f’/z. O

k=0

Theorem 5.3-1: If X ~ G(«,0), then

u=ab, o2 =ab?, and M(t) = (1-0t)™ t <1/0.
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o a+l | o
Proof: E(X) = J x;x“‘le"wdx _ Ma+10 J ! 1x("‘”)‘le"wdx
0 T(x)8” I'(a)0* 0 (o + DO*™
o
_ ol (0 )90 b
(a)o”
2
E(X 2) — J.OO X2 ;Xa—le—x/edx — 1—‘(a + 2)0a+ JOO 1 X(Ol+2)—1e—X/9dX
0 T(x)0* ()0 0 I'(a + 2)0%*2

_ (@ + Dol ()0 20* ~ (o + Dab?.

[(c)0*

o2 = E(X?) - [E(XX)P = (a + Yab? — 2202 = ab?.

e et x - _x
M(t)_I 0 T(a)o” eXp(T) o

_lo/a-et)* = 1 @1 oy - X "
S e J 0 [(a)[o/(1- 61)]* IO{9/(1— 0t)}d

=@1-6t)*. O

One of the important properties of the gamma distribution (including the exponential,
chi-square distributions, and so on), is its reproductive property: If X; and X, are

independently  distributed as  G(a4,0 ) and G(ay,0 ) , respectively, then
(Xy+ X5)~G((a1+ @ 5),0). Wewill discussthisin Chapter V1I.
Definition 5.3-2: The gamma distribution with 0 =2 and « =r/2 (r being a positive

integer) iscalled the y r2 (read “chi-square”) distribution with r degrees of freedom. 0O

Note that for r < 2 the mode of the chi-square distribution is at 0 while for r > 2 the mode is at
r—2.

Theorem5.3-2: If X ~ )(rz,then

p=of =r, c?=aB?=2r, and M (t) = (1 2t)"/2 t<2. O
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54 Normal Distribution

The normal distribution (or called the Gaussian distribution) is perhaps the most important
distribution in statistical applications since many measurements have (approximate) normal
distributions. It was introduced by the French mathematician Abrahan de Moivre in 1733 and was
used by him to approximate probabilities associated with binomial random variables when the
binomial parameter nislarge. This result was later extended by Laplace and others and is now
encompassed in a probability theorem known as the central limit theorem. The centra limit
theorem, one of the two most important results in probability theory (the other being the strong law
of large number), gives a theoretical base to the often noted empirical observation that, in practice,
many random phenomena obey, at least approximately, a normal probability distribution. We will
discuss one form of this theorem in Chapter VIII.

We say that X is a norma random variable, or simply that X is normally distributed, with
parameters x4 and o2 denotedby X ~ N(u,o?) if the density of X isgiven by

2
F(x) = exp{—(x_'u)}, — o0 < X < 0.

N 2o 252

This density function is a bell-shaped curve that is symmetric about . The values u and

2

o2, satisfying — o < yu <o and 0< o < o, represent, in some sense, the average value and

the possible variation of X.

To provethat f(x) isindeed aprobability density function, we need to show that
00 1 0 2 2
f(X)dx = ——| expr (x- 20 < (dx = 1.
[ 1090 [ el (x- w?/20%)
By making the substitution y = (x — u)/o , we see that
1 = 2 /05 2 1 2
— | expp (x- 20°(dx = —| expr- 2(d
\/ZGJ‘_OO p{( ,“)/6} @j_w p{y/}y
and hence we must show that
fw exp{— y2/2}dy =Jor .

Let | :f exp{— y2/2}dy. Sincel >0,if 12 =27 ,then | =+/27r. Now

12 = f; exp{— y2 /Z}dyjiO exp{— xz/z}dx = f; fw exp{— (y2 + x2) 2} dydx.

We now evaluate the double integral by means of a change of variables to polar coordinates. That
is, x=rcosf, y=rsn@, dydx =rdfdr. Thus
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0 2 2 0 2 2 /6|
2=I Iﬂe‘r 21 do dr =27r.[ re”" 2dr = —27e”" /2‘ —2r.
0 Jo 0 0

Hence | = /27, and theresult is proved.

Theorem5.4-1: If X ~ N(u,c?), then

2,2
E(X) =u, Var(X) = o2, and M(t) = exp{yt + Gzt }

0 52
020 ef

. ® X (x - )
Proof: E(X) = — X =
(X) J-—w o2 p{ 202 }Let Z?():y)/c -~ gAf21

2 2
(° Z -z o 1 -z
= ——exXp — |dz + ex dz

v - )= [ 2 eef 7]

© g2z -z
L ZT# on\/_ ( Jadz.

Let u=z and zexp(— zz/z)dz =dv. Then, du=dz, and — exp(— 22/2)= v. The integral

by partsyields
2 72N 2
Var(X):% (— zexp(%D +I_Ooexp(%}dz =c?.
gtX X — 2 -
M(t)—j%\/_exp{—%}dx_jwar {——[ (u+c;2t)x+u]}d

To evauate thisintegral, we compl ete the square in the exponent

x? — 2(;1 + Gzt)X + /,tz = [X— (y + O'Zt)]z - 2/,10'2t ~-o*t2?.

2;10'2t+0't p{ }
Thus, M (t) = ex ex +o?t) pdx.
(t) p[ -~ Jjwm/— - i

Note that the integrand in the last integral is like the pdf of a normal distribution with u replaced
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by u+ o%t. However, the normal pdf integrates to one for all rea u, in particular when it
2
t. Thus

2 4.2 2,2
M(t):exp[2y0t+20't J=6Xp(ut+at J O
2 2

(o)

equas u +o

Definition 5.4-1: If Zis N(0,1), we say that Z has a standard normal distribution. Its pdf
denoted by ¢(z) and CDF denoted by ®(z) are

1 z°
9(2) = E exp(— 7)

D(2)=P(Z<2) = J'Zw%exp(— %] dt = fw(/)(t)dt . O

It is not possible to evaluate the integral ®(z) by finding an anti-derivative that can be
expressed as an elementary function. However, numerical approximations for integrals of this

type have been tabulated. Because of the symmetry of the standard normal pdf, we have that
®d(-2) =1-d(2) and ¢(-2) = ¢(2) for dl z Furthermore, due to the special form of ¢(z),

we have

$(2) = ~20(2) and ') = (2 - 1h(d).

Consequently, ¢(z) has a unique maximum at z = 0 and inflection pointsat z=+ 1. Note aso
that ¢(z) > 0 and ¢'(z) >0 as z > tw.

Theorem 5.4-2:  If Xis N(u,02),then Z = (X — u)/o is N(0,1).

Proof: Thedistribution function of Z is

X - u ou 1 (x = p)?
PZ<2)=P <z|=P(X<zo+u)= exp| — dx
( ) ( > j ( o H) _[_OO o2r p{ 262

iaf
Let t=(x-u)/c N2 2

But this is the expression for ®(z), the distribution function of a standardized norma random
variable. HenceZis N(0,1). 0O

Theorem 5.4-3: If Z ~ N(0,1),then Y =22~ 52,
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Proof: Thedistribution function F(y) of Yis, fory> 0,

F(Y) = P(Y <y)=P@Z? <y) = P(-Jy < Z < \Jy)

jﬁ\/_ ( Jd —2[ Zz}dz.

If we change the variable of integration by writing z = Jx , then we have

F(y)=j5éxexp(_zxj dx, y>o0.

Of course, F(y) =0 for y < 0. Hence the pdf f(y) = F'(y) of the continuous-type random
variable Y is, by one form of the fundamental theorem of calculus,

f(y) = ﬁ y(]/z)‘l exp(__Zyj’ y>0.
Since r(1/2)= .[: x 2L exp(— x)dx
_[ \Eexp[ de
Let y= F
oin [ el Y Ja
=2Vn |, mexp o |
1
= 2\/25 = \/;,
1 _ —
) ¥2)-1 p(_yj > 0.
(y) rW2) 22 y &P y=

Thatis, Y=2%~42. 0O
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55 Beta Distribution

A random variable X is said to have a beta distribution with the parameters a > 0 and
B > 0,denoted X ~ BETA(«x, B) if itsdensity isgiven by

! x*H1-xft o0<x<1
f(x) = B(a, B)

0 otherwise

where

B(ct, f) :I 11— x)Ptdx = %

Theorem 5.5-1: J; 11— x)fLdx _11:((0‘)1;(23))
o

Proof: [(a)['(B) = Ugo X% _1e_xdxj U;o yﬂ_le_ydyj = Igo J? x% 1y B=Te=(*+¥) gy dy .

Let u=—> sothat x= —Y—, dx = yd , (0,1) and x+y=—Y_
X+ Yy 1-u (1-u)? 1-
r@re) = |, j —1 y* yP e y/iuy g

Sup R

ol Ut i y/ieu)
= Io Jomy e dudy.

Let y/(l-u)=v,sothat y=v(l-u), dy =(1-u)dv, ve(0o). Thentheintegra is

= _[(:o J;u“_l(l —u)f et P e Vduav
= _[Oo vetP-leVay J.OO u* 11 - u)’tau
0 0

= T(a + ) j(‘fua—l(l_ uftdu. O

1
According to the Theorem 5.5-1, Jo f(x)dx =1

Remark: For o = B =1,wegetthe U(0,1),since T'() =1 and T(2) =1xT'(D) =1.

The beta distribution is often used as a model for proportions, such as the proportion of
impurities in a chemical product or the proportion of time that a machine is under repair. It can
also be used to model arandom phenomenon whose set of possible valuesis some finite interval [a,
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b] — which by letting a denote the origin and taking (b — a) as a unit measurement can be
transformed into the interval [0, 1].

When o = f, the beta density is symmetric about 1/2, giving more and more weight to
region about 1/2 as the common value « increases. When g > «, the density is skewed to the
left (in the sense that smaller values become more likely); and it is skewed to the right when

oa>p.
Theorem 55-2: If X ~ BETA(«, B), then
(04
= and
H a+pf

Proof: Leftasanexcisee O

o2 = af
(a+B+D(a+p)?*

Example 5.5-1: A gasoline wholesale distributor has bulk storage tanks that hold fixed
supplies and are filled every Monday. Of interest to the wholesaler is the proportion of this supply
that is sold during the week. Over many weeks of observations, the distributor found that this
proportion could be modeled by a beta distribution with a« =4 and g =2. Find the probability

that the wholesaler will sell at least 90% of her stock in a given week.
Solution: If X denote the proportion sold during the week, then

f(x)z%xg’(l—x), 0<x<1
and

N X4 1 X5 1
P(x>09) =] 20(x° - x*) dx = 20{7} - E} } = 20(0.004) = 0.08

0.9 0.9

It isnot very likely that 90% of the stock will be sold inagivenweek. 0O
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5.6 Mixed Distribution

It is possible to have a random variable whose distribution is neither purely discrete nor
continuous. A probability distribution for a random variable X is of mixed type if the CDF has the

form
F(X) = aFq(x) + 1 - a)Fc(X)

where Fy(x) and F.(x) are CDFsof discete and continuous type, respectively, and 0 <a< 1.

Example 5.6-1: Suppose that a driver encounters a stop sign and either waits for a random
period of time before proceeding or proceeds immediately. An appropriate model would allow the
waiting time to be either zero or positive, both with nonzero probability. Let the CDF of the
waiting time X be

F(X) = 0.4F4(X) + 0.6F.(x) = 0.4 + 0.6(1— )

where Fy(x) =1 and F.(x) =1-e ™ if x> 0, and both are zero if x< 0.  The probability of
proceeding immediately is P(X = 0) = 0.4. The probability that the waiting timeisless than 0.5
minutesis

P(X < 05) = 04+ 061 - 605 = 0,636.
The distribution of X given X>0 corresponds to

P(XSX|X>0):P(X>O and Xéx):P(O<X3x):F(x)_|:(o)

P(X > 0) P(X > 0) 1- F(0)
—X
204+06h—e )_04=1—e*. -
1-04

Example 5.6-2: The distribution function of the random variable Y is given by

0 y<0
y? 14 0<y<1
F(y)=< 1/2 1<y<?2
y/3 2<y<3
1 3<y.

A graphof F(y) ispresentedinFigure5.6-1. Probabilities can be computed using F(y):
PO<Y<1) =14

PO<Y <1 =12
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P(Y =1) =12

PAL<Y <2) =2/3-14=5/12.

F ()
| /
213 |
172
— p)
/ | |
1 2 3
Figure 5.6-1 Graph of F (y)

)]
O

1/4

We now find the mean and variance for the random variable Y. Notethat there F'(y) = y/2
when O0<y<1,and F'(y) =23 when 2<y<3;dso P(Y=1) =1/4 and P(Y =2) =1/6.
Accordingly, we have

= EQY) = o oy/2)ay + 104) + 2/6) + [ yy3)ay - 19/12.

o? = E(Y3) -[EM]? = | ; y2(y/2)dy + 1°(4) + 2° (16) + | f y2(3)dy- (19/12)?

-148. O



