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Chapter V Continuous Distributions

Continuous distributions are generally amenable to more elegant mathematical treatment than
are discrete distributions. This makes them especially useful as approximations to discrete
distributions. Continuous distributions are used in this way in most applications, both in the
construction of models and in applying statistical techniques. An essential property of a
continuous random variable is that there is zero probability that it takes any specified numerical
value, but in general a nonzero probability, calculable as a definite integral of a probability density
function that it takes a value in specified (finite or infinite) intervals.

Some concepts that have great value for discrete distributions are much less valuable in the
discussion of continuous distributions, for example, probability generating functions and factorial
moments. On the other hand, standardization (use of the transformed variable to produce a
distribution with zero mean and unit standard deviation) is much more useful fro continuous
distributions.

5.1 Uniform Distribution

Suppose that a continuous random variable X can assume values only in a bounded interval,
say the open interval (a, b), and suppose that the pdf is constant, say cxf )( over the interval.
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The CDF of ),(~ baUX has the form




















xb

bxa
ab
ax

ax

xF

1

0

)(

Example 5.1-1: Buses arrive at a specified stop at 15-minute intervals starting at 7 A.M.
That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time that
is uniformly distributed between 7 and 7:30, find the probability that he waits (1) less than 5
minutes for a bus. (2) More than 10 minutes for a bus.

Solution: Let X denote the number of minutes past 7 A.M. that the passenger arrives at the stop.
Since X is a uniform random variable over the interval (0, 30), it follows that the passenger will
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have to wait less than 5 minutes if (and only if) he arrives between 7:10 and 7:15 or between 7:25
and 7:30. Hence the desired probability for (1) is
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Similarly, he would have to wait more than 10 minutes if he arrives between 7 and 7:05 or between
7:15 and 7:20, and so the probability for (2) is

3
1

30
1

30
1

)2015()50(
20

15

5

0
  dxdxXPXP . 

Theorem 5.1-1: If ),(U~ baX , then
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Perhaps a more important application of the uniform distribution occurs in the case of
computer simulation, which relies on the generation of “random number.”  Random number 
generators are functions in the computer language, or in some cases subroutines in programs, which
are designed to produce numbers that behave as if they were data from )1,0(U with CDF

xxF )( for 0 < x < 1. We will discuss this in Chapter VII.
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5.2 Exponential Distribution

When previously observing a process of the (approximate) Poisson type, we counted the
number of changes occurring in a given interval. This number was a discrete-type random
variable with a Poisson distribution. But not only is the number of changes a random variable; the
waiting times between successive changes are also random variables. However, the latter are of
the continuous type, since each of them can assume any positive value. In particular, let W denote
the waiting time until the first change occurs when observing a Poisson process in which the mean

number of changes in the unit interval is . Then W is a continuous-type random variable, and we
proceed to find its distribution function.

Clearly, this waiting time is nonnegative; thus the distribution function 0)( wF , w < 0.

For 0w ,
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since we previously discovered that we  equals the probability of no changes in an interval of
length w. Thus, when 0w , the pdf of W is given by

)()( wfewF w   .

We often let  1 and say that the random variable X has an exponential distribution,
denoted by )(EXP~ X , if its pdf is defined by
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According to the Theorem 5.2-1, if  is the mean number of changes in the unit interval,
then  1 is the mean waiting time for the first change.

Example 5.2-1: Customers arrive in a certain shop according to an approximate Poisson
process at a mean rate of 20 per hour. What is the probability that the shopkeeper will have to wait
more than 5 minutes for the arrival of the first customer?

Solution: Let X denote the waiting time in minutes until the first customer arrives and note that
31 is the expected number of arrives per minutes. Thus

3
1





and







 x

x
xf 0,

3
exp

3
1

)( .

Hence,

189.0
3
5

exp
3

exp
3
1

)5(
5














 


dx

x
XP .

The median time until the first arrival is
079.2)5.0ln(3 m . 

Theorem 5.2-2 (memoryless property):

If )(EXP~ X , then   )(| tXPaXtaXP  for all a > 0 and t > 0.
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5.3 Gamma and Chi-Square Distributions

In the (approximate) Poisson process with mean , we have seen that the waiting time until
the first change has an exponential distribution. We now let W denote the waiting time until the

th change occurs and find the distribution of W.
The distribution function of W, when w > 0, is given by
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since the number of changes in the interval [0, w] has a Poisson distribution with mean w .
Because W is a continuous-type random variable, )(wF is equal to the pdf of W whenever this

derivative exists. We have, provided w > 0, that
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Of course, if w < 0, then 0)( wF and 0)( wF . A pdf of this form is said to be one of the

gamma type, and the random variable W is said to have a gamma distribution.
Before determining the characteristics of the gamma distribution, let us consider the gamma

function for which the distribution is named. The gamma function is defined by
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This integral is obviously positive for t > 0. If t > 1, integration of the gamma function of t by
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For example, )5(5)6(  and )5.2()5.2()5.3(  . Whenever, t = n, a positive integer, we
have, by repeated application of )1()1()(  ttt , that
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Thus, when n is a positive integer, we have that

)!1()(  nn .

Let us now formally define the pdf of the gamma distribution and find its characteristics.

Definition 5.3-1: A random variable X is said to have a gamma distribution with parameters
0 and 0 , denoted by ),(~ GX , if and only if the density function of X is
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According to the Definition 5.3-1, W, the waiting time until the th change in a Poisson
process, has a gamma distribution with parameters and  1 . By the change of variables
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Example 5.3-1: Suppose that an average of 30 customers per hour arrive at a shop in
accordance with a Poisson process. That is, if a minute is our unit, then 21 . What is the

probability that the shopkeeper will wait more than 5 minutes before both of the first two customers
arrive?

Solution: If X denotes the waiting time in minutes until the second customer arrives, then X has a
gamma distribution with 2 and 21   . Hence,
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We would also have used equation (5.3.1) with  1 because is an integer. From equation

(5.3.1) we have

    2525
12

0

251

0 2
7

2
5

1
!

25
!

)5( 
















  ee

k
e

k
ex

XP
k

k

k

xk 
. 

Theorem 5.3-1: If ),(~ GX , then
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One of the important properties of the gamma distribution (including the exponential,
chi-square distributions, and so on), is its reproductive property: If 1X and 2X are

independently distributed as ),( 1 G and ),( 2 G , respectively, then

    ),(~ 2121  GXX . We will discuss this in Chapter VII.

Definition 5.3-2: The gamma distribution with 2 and 2r (r being a positive

integer) is called the 2
r  (read “chi-square”) distribution with r degrees of freedom. 

Note that for r 2 the mode of the chi-square distribution is at 0 while for r > 2 the mode is at
r 2.

Theorem 5.3-2: If 2~ rX  , then
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5.4 Normal Distribution

The normal distribution (or called the Gaussian distribution) is perhaps the most important
distribution in statistical applications since many measurements have (approximate) normal
distributions. It was introduced by the French mathematician Abrahan de Moivre in 1733 and was
used by him to approximate probabilities associated with binomial random variables when the
binomial parameter n is large. This result was later extended by Laplace and others and is now
encompassed in a probability theorem known as the central limit theorem. The central limit
theorem, one of the two most important results in probability theory (the other being the strong law
of large number), gives a theoretical base to the often noted empirical observation that, in practice,
many random phenomena obey, at least approximately, a normal probability distribution. We will
discuss one form of this theorem in Chapter VIII.

We say that X is a normal random variable, or simply that X is normally distributed, with
parameters  and 2 denoted by ),(~ 2NX if the density of X is given by
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This density function is a bell-shaped curve that is symmetric about . The values  and

2 , satisfying   and  20  , represent, in some sense, the average value and

the possible variation of X.
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We now evaluate the double integral by means of a change of variables to polar coordinates. That
is, drdrdxdyryrx   ,sin,cos . Thus
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Hence 2I , and the result is proved.
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




















 


2
exp

2

)(

2
exp

2
)(

2

Let
2

2

dz
z

dz
zz






















 







 2
exp

2
1

2
exp

2

22










 


























2

exp
2
1 2z

.

    










 



 



 2

22
2

2
exp

2
)(

)(Var







xx

XEX

 
 dz

zz

xz

























2
exp

2

222

Let

.

Let zu  and   dvdzzz  2exp 2 . Then, dzdu  , and   vz  2exp 2 . The integral

by parts yields

2
222

2
exp

2
exp

2
)(Var 




















































 









dz
zz

zX .

    dxxtxdx
xe

tM
xt








 





 











 
 222

22

2
2

2

1
exp

2
1

2
exp

2
)( 





.

To evaluate this integral, we complete the square in the exponent

     24222222 22 tttxxtx   .

Thus,    dxtx
tt

tM

















 
 





22
22

242

2

1
exp

2
1

2

2
exp)( 




.

Note that the integrand in the last integral is like the pdf of a normal distribution with  replaced
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by t2 . However, the normal pdf integrates to one for all real , in particular when it

equals t2 . Thus





















 


2
exp

2

2
exp)(

22

2

242 t
t

tt
tM







. 

Definition 5.4-1: If Z is )1,0(N , we say that Z has a standard normal distribution. Its pdf
denoted by )(z and CDF denoted by )(z are











2
exp

2
1

)(
2z

z




dttdt
t

zZPz
zz

 









 )(

2
exp

2
1

)()(
2




. 

It is not possible to evaluate the integral )(z by finding an anti-derivative that can be

expressed as an elementary function. However, numerical approximations for integrals of this
type have been tabulated. Because of the symmetry of the standard normal pdf, we have that

)(1)( zz  and )()( zz   for all z. Furthermore, due to the special form of )(z ,

we have

)()( zzz   and   )(1)( 2 zzz   .

Consequently, )(z has a unique maximum at z = 0 and inflection points at z = 1. Note also
that 0)( z and 0)( z as z .

Theorem 5.4-2: If X is ),( 2N , then   XZ is )1,0(N .

Proof: The distribution function of Z is

 










 


 zXPz

X
PzZP )(

 
dx

xz











 




 2

2

2
exp

2
1








 
 dt

tz

xt









 


2

exp
2
1 2

Let 

.

But this is the expression for )(z , the distribution function of a standardized normal random
variable. Hence Z is )1,0(N . 

Theorem 5.4-3: If )1,0(~ NZ , then 2
1

2 ~ ZY  .
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Proof: The distribution function )(yF of Y is, for y 0,

)()()()( 2 yZyPyZPyYPyF 

dz
z

dz
z yy

y 




















  2

exp
2
1

2
2

exp
2
1 2

0

2


.

If we change the variable of integration by writing xz  , then we have

dx
x

x
yF

y






 2

exp
2
1

)(
0 

, y 0.

Of course, 0)( yF for y < 0. Hence the pdf )()( yFyf  of the continuous-type random

variable Y is, by one form of the fundamental theorem of calculus,







 

2
exp

2
1

)( 1)21( y
yyf


, y 0.

Since      
  
0

121 exp21 dxxx

 















0

2

2Let
2

exp2 dy
y

xy
















0

2

2
exp

2
1

2 dy
y




 
2
1

2 ,

 









 

2
exp

221

1
)( 1)21(

21
y

yyf , y 0.

That is, 2
1

2 ~ ZY  . 
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5.5 Beta Distribution

A random variable X is said to have a beta distribution with the parameters 0 and
0 , denoted ),(BETA~ X if its density is given by

 








 




otherwise0

101
),(

1

)(

11 xxx
Bxf





where

 
)(
)()(

1),(
1

0

11




 




  dxxxB .

Theorem 5.5-1:  
)(
)()(

1
1

0
11







  dxxx .

Proof: dydxeyxdyeydxex yxyx 
     
















0 0
)(11

0
1

0
1)()(  .

Let
yx

x
u


 , so that

u
uy

x



1

,
 21 u

duy
dx


 ,  1,0u and

u
y

yx



1

.

 
 

 
dy

u

du
yeyy

u

u uy
 








0

1

0 2
111

1

1

11
)()( 






 
  dyduey

u

u uy
 








0

1

0
11

1

1

1





.

Let   vuy 1 , so that )1( uvy  , dvudy )1(  ,   ,0v . Then the integral is

  dvduevuu v
  
0

1

0
111 1 

 
   
0

11
0

1 1 duuudvev v 

   
  
0

11 1 duuu  . 

According to the Theorem 5.5-1, 1)(
1

0
 dxxf .

Remark: For 1 , we get the )1,0(U , since 1)1(  and 1)1(1)2(  .

The beta distribution is often used as a model for proportions, such as the proportion of
impurities in a chemical product or the proportion of time that a machine is under repair. It can
also be used to model a random phenomenon whose set of possible values is some finite interval [a,
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b]  which by letting a denote the origin and taking (b a) as a unit measurement can be
transformed into the interval [0, 1].

When  , the beta density is symmetric about 1/2, giving more and more weight to
region about 1/2 as the common value  increases. When  , the density is skewed to the

left (in the sense that smaller values become more likely); and it is skewed to the right when
 .

Theorem 5.5-2: If ),(BETA~ X , then





 and 2
2

))(1( 



 .

Proof: Left as an excise. 

Example 5.5-1: A gasoline wholesale distributor has bulk storage tanks that hold fixed
supplies and are filled every Monday. Of interest to the wholesaler is the proportion of this supply
that is sold during the week. Over many weeks of observations, the distributor found that this
proportion could be modeled by a beta distribution with 4 and 2 . Find the probability

that the wholesaler will sell at least 90% of her stock in a given week.

Solution: If X denote the proportion sold during the week, then

10,)1(
)2()4(

)24(
)( 3 




 xxxxf

and

  08.0)004.0(20
54

2020)9.0(
1

9.0

51

9.0

41

9.0

43 





















 

xx
dxxxxP

It is not very likely that 90% of the stock will be sold in a given week. 
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5.6 Mixed Distribution

It is possible to have a random variable whose distribution is neither purely discrete nor
continuous. A probability distribution for a random variable X is of mixed type if the CDF has the
form

)()1()()( xFaxaFxF cd 

where )(xFd and )(xFc are CDFs of discete and continuous type, respectively, and 0 < a < 1.

Example 5.6-1: Suppose that a driver encounters a stop sign and either waits for a random
period of time before proceeding or proceeds immediately. An appropriate model would allow the
waiting time to be either zero or positive, both with nonzero probability. Let the CDF of the
waiting time X be

)1(6.04.0)(6.0)(4.0)( x
cd exFxFxF 

where 1)( xFd and x
c exF 1)( if 0x , and both are zero if x < 0. The probability of

proceeding immediately is 4.0)0( XP . The probability that the waiting time is less than 0.5

minutes is

  636.016.04.0)5.0( 5.0  eXP .

The distribution of X given X > 0 corresponds to

)0(1
)0()(

)0(
)0(

)0(
)and0(

)0|(
F

FxF
XP

xXP
XP

xXXP
XxXP














  x
x

e
e 






 1

4.01
4.016.04.0

. 

Example 5.6-2: The distribution function of the random variable Y is given by






















.31
323/
212/1
104/
00

)(

2

y
yy
y
yy
y

yF

A graph of )(yF is presented in Figure 5.6-1. Probabilities can be computed using )(yF :

41)10( YP

21)10( YP
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21)1( YP

1254132)21( YP .

y

F (y)

1 2 3

1 / 4

1 / 2

2/3

1

.
.

.

○

○

Figure 5.6-1 Graph ofF (y)

We now find the mean and variance for the random variable Y. Note that there 2)( yyF 

when 10 y , and 31)( yF when 32 y ; also 41)1( YP and 61)2( YP .

Accordingly, we have

        1219316124112)(
3

2

1

0
  dyydyyyYE .

           23

2
2221

0
2222 1219316124112)()(   dyydyyyYEYE

481 . 


