Chapter VIII Sampling Distributions and the Central Limit Theorem

Functions of random variables are usually of interest in statistical application. Consider a set of observable random variables X_1, X_2, \dots, X_n . For example, suppose the variables are a random sample of size *n* from a population.

Definition 8.0-1: A function of **observable** random variables, $U = g(X_1, X_2, \dots, X_n)$, which does not depend on any *unknown* parameters, is called a *statistic*.

It is required that the variables be **observable** because of the intended use of a statistic. The intent is to make inferences about the distribution of the set of random variables, and if the variables are not observable or if the function $g(X_1, X_2, \dots, X_n)$ depends on unknown parameters, then U would not be useful in making such inferences.

Two important **statistics** are the sample mean \overline{X} and the sample variance S^2 . Of course, in a particular sample, say $x_1, x_2, ..., x_n$, we observed definite values of these **statistics**, \overline{x} and s^2 ; however, we should recognize that each value is only one observation of respective random variable, \overline{X} and S^2 . That is, each \overline{X} and S^2 is also a random variable with its own distribution.

Sampling Distributions Related to the Normal Distribution 8.1

Theorem 8.1-1: Let X_1, X_2, \dots, X_n be a random sample of size *n* from a normal distribution with mean μ and variance σ^2 . Then

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is normally distributed with mean $\mu_{\overline{X}} = \mu$ and variance $\sigma_{\overline{X}}^2 = \sigma^2/n$, $\overline{X} \sim N(\mu, \sigma^2/n)$. **Proof:** Since the moment-generating function of each *X* is

$$M_X(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right),$$

the moment-generating function of $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is equal to

$$M_{\overline{X}}(t) = E\left(e^{(t/n)\sum X_i}\right) = \prod_{i=1}^n M_{X_i}\left(\frac{t}{n}\right) = \left\{\exp\left[\mu\left(\frac{t}{n}\right) + \frac{\sigma^2(t/n)^2}{2}\right]\right\}^n = \exp\left[\mu t + \frac{(\sigma^2/n)t^2}{2}\right].$$

However, the moment-generating function uniquely determines the distribution of the random Since this one is that associated with the normal distribution $N(\mu, \sigma^2/n)$, the sample variable. mean \overline{X} is $N(\mu, \sigma^2/n)$.

Theorem 8.2-2: Let Z_1, Z_2, \dots, Z_n have standard normal distributions, N(0, 1). If these random variables are mutually independent, then $W = Z_1^2 + Z_2^2 + \dots + Z_n^2$ has a χ^2 distribution with *n* degrees of freedom.

Proof: The moment-generating function of *W* is given by

$$M_{W}(t) = E\left(e^{tW}\right) = E\left(\exp\left\{t\left(Z_{1}^{2} + Z_{2}^{2} + \dots + Z_{n}^{2}\right)\right\}\right) = M_{Z_{1}^{2}}(t) \times M_{Z_{2}^{2}}(t) \times \dots \times M_{Z_{n}^{2}}(t)$$

Since Z_i^2 is a χ^2 distributed random variable with 1 degree of freedom, we have

$$M_{Z_i^2}(t) = (1 - 2t)^{-1/2}, \quad i = 1, 2, \cdots, n.$$

Hence,

$$M_W(t) = (1 - 2t)^{-1/2} \times (1 - 2t)^{-1/2} \times \dots \times (1 - 2t)^{-1/2} = (1 - 2t)^{-n/2}$$

The uniqueness of the moment-generating function implies that W is $\chi^2(n)$.

Corollary 8.2-1: If X_1, X_2, \dots, X_n have mutually independent normal distributions $N(\mu_i, \sigma_i^2)$, $i = 1, 2, \dots, n$, respectively, then the distribution of

$$W = \sum_{i=1}^{n} \frac{(X_i - \mu_i)^2}{\sigma_i^2}$$

has a χ^2 distribution with *n* degrees of freedom.

Proof: We simply note that $Z_i = (X_i - \mu_i)/\sigma_i$ is $N(0,1), i = 1, 2, \dots, n$.

Theorem 8.2-3: Let X_1, X_2, \dots, X_n be a random sample of size *n* from a normal distribution, $N(\mu, \sigma^2)$,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

Then

(a) \overline{X} and S^2 are independent.

(b)
$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2}$$
 has a χ^2 distribution with $(n-1)$ degrees of freedom.

Proof: The proof of part (a) is beyond this course; so we accept it without proof here. To prove part (b), note that

$$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} = \sum_{i=1}^{n} \left[\frac{(X_i - \overline{X}) + (\overline{X} - \mu)}{\sigma} \right]^2 = \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 + \frac{n(\overline{X} - \mu)^2}{\sigma^2}$$

since the cross-product term is equal to

$$2\sum_{i=1}^{n} \frac{(\overline{X} - \mu)(X_i - \overline{X})}{\sigma^2} = \frac{2(\overline{X} - \mu)}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X}) = 0.$$

But $Y_i = (X_i - \mu)/\sigma$, $i = 1, 2, \dots, n$, are mutually independent standard normal variables. Hence $W = Y_1^2 + Y_2^2 + \dots + Y_n^2$ is $\chi^2(n)$ by Theorem 8.2-2. Moreover, since $\overline{X} \sim N(\mu, \sigma^2/n)$, then $Z^2 = \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2 = \frac{n(\overline{X} - \mu)^2}{\sigma^2}$ is $\chi^2(1)$. Thus, $W = \frac{(n-1)S^2}{-2} + Z^2.$

However, from part (a), \overline{X} and S^2 are independent; thus Z^2 and S^2 are also independent. In the moment-generating function of W, this independence permits us to write

$$E\left(e^{t\left[(n-1)S^{2}/\sigma^{2}+Z^{2}\right]}\right)=E\left(e^{t(n-1)S^{2}/\sigma^{2}}e^{tZ^{2}}\right)=E\left(e^{t(n-1)S^{2}/\sigma^{2}}\right)E\left(e^{tZ^{2}}\right).$$

Since W and Z^2 have χ^2 distributions, we can substitute their moment-generating functions to

obtain

$$(1-2t)^{-n/2} = E\left(e^{t(n-1)S^2/\sigma^2}\right)(1-2t)^{-1/2}.$$

Equivalently, we have

$$E\left(e^{t(n-1)S^2/\sigma^2}\right) = (1-2t)^{-(n-1)/2}, \quad t < 1/2.$$

This, of course, is the moment-generating function of a $\chi^2(n-1)$ variable, and accordingly $(n-1)S^2/\sigma^2$ has this distribution.

Theorem 8.2-4: If Z is a standard normal distribution, N(0,1), if U is a χ^2 distribution with v degrees of freedom, and if Z and U are independent, then

$$T = \frac{Z}{\sqrt{U/v}}$$

has a *t* distribution with *v* degrees of freedom. Its *p.d.f.* is

$$f(t) = \frac{\Gamma[(v+1)/2]}{\Gamma(v/2)} \frac{1}{\sqrt{\pi v}} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2}, \quad -\infty < t < \infty$$

REMARK: This distribution was discovered by W. S. Gosset when he was working for an Irish brewery. Because Gosset published under the pseudonym Student, this distribution is sometimes known as Student's *t* distribution.

Proof: Since Z and U are independent, the joint *p.d.f.* of Z and U is

$$g(z,u) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \frac{1}{\Gamma(v/2) 2^{v/2}} u^{v/2-1} e^{-u/2}, \quad -\infty < z < \infty, \quad 0 < u < \infty.$$

The distribution function $F(t) = Pr(T \le t)$ of T is given by

$$F(t) = \Pr(Z/\sqrt{U/v} \le t) = \Pr(Z \le t\sqrt{U/v}) = \int_0^\infty \int_{-\infty}^{t\sqrt{u/v}} g(z, u) \, dz \, du \, .$$

That is,

$$F(t) = \frac{1}{\sqrt{\pi} \Gamma(v/2)} \int_0^\infty \left[\int_{-\infty}^{t\sqrt{u/v}} \frac{e^{-z^2/2}}{2^{(v+1)/2}} dz \right] u^{v/2-1} e^{-u/2} du$$

The p.d.f. of T is the derivative of the distribution function; so applying the Fundamental Theorem of Calculus to the inner integral we see that

$$f(t) = F'(t) = \frac{1}{\sqrt{\pi} \Gamma(v/2)} \int_0^\infty \frac{e^{-(u/2)(t^2/v)}}{2^{(v+1)/2}} \sqrt{\frac{u}{v}} u^{v/2-1} e^{-u/2} du$$

$$=\frac{1}{\sqrt{\pi\nu}\,\Gamma(\nu/2)}\int_0^\infty \frac{u^{(\nu+1)/2-1}}{2^{(\nu+1)/2}}\,e^{-(u/2)\left(1+t^2/\nu\right)}du$$

In the integral make the change of variables $y = (1 + t^2/v)u$ so that $du/dy = 1/(1 + t^2/v)$. Thus we find that

$$f(t) = \frac{\Gamma((v+1)/2)}{\Gamma(v/2)} \frac{1}{\sqrt{\pi v}} \left(1 + \frac{t^2}{v}\right)^{-(v+1)/2} \int_0^\infty \frac{y^{(v+1)/2} - 1}{\Gamma((v+1)/2) 2^{(v+1)/2}} e^{-y/2} dy$$

The integral is equal to 1 since the integrand is the p.d.f of a chi-square distribution with (v + 1) degrees of freedom. Thus the p.d.f. is as given in the theorem.

Note that the distribution of *T* is completely determined by the number *v*. Its p.d.f. is symmetrical with respect the vertical axis t = 0 and is very similar to the graph of the p.d.f. of the standard normal distribution N(0,1). It can be shown that E(T) = 0 for v > 1 and Var(T) = v/(v-2) for v > 2.¹ When v = 1, the *t* distribution is the same as the standard Cauchy distribution in which the mean and the variance do not exist.

Theorem 8.2-5: If X_1, X_2, \dots, X_n denote a random sample from $N(\mu, \sigma^2)$, then

$$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1).$$

Proof: This follows from Theorem 8.2-4, since $(\overline{X} - \mu)/(\sigma/\sqrt{n}) \sim N(0,1)$ and by Theorem 8.2-3, $U = (n-1)S^2/\sigma^2 \sim \chi^2(n-1)$, and \overline{X} and S^2 are independent.

Example 8.1-1: Let X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_m be independent random samples from populations with respectively distributions $X_i \sim N(\mu_x, \sigma_x^2)$ and $Y_j \sim N(\mu_y, \sigma_y^2)$. The distributions of \overline{X} and \overline{Y} are $N(\mu_x, \sigma_x^2/n)$ and $N(\mu_y, \sigma_y^2/m)$, respectively. Since \overline{X} and \overline{Y} are independent, the distribution $\overline{X} - \overline{Y}$ is $N(\mu_x - \mu_y, \sigma_x^2/n + \sigma_y^2/m)$, and

$$Z = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_x - \mu_y\right)}{\sqrt{\sigma_x^2/n + \sigma_y^2/m}} \sim N(0, 1).$$

Since $(n-1)S_x^2/\sigma_x^2 \sim \chi^2(n-1)$ and $(m-1)S_y^2/\sigma_y^2 \sim \chi^2(m-1)$, and both are independent,

$$U = \frac{(n-1)S_x^2}{\sigma_x^2} + \frac{(m-1)S_y^2}{\sigma_y^2} \sim \chi^2(n+m-2).$$

$$E(Y^k) = \frac{\beta^k \Gamma(\alpha + k)}{\Gamma(\alpha)}$$
 for $(\alpha + k) > 0$.

¹ You can find these results by the following fact: If *Y* has a gamma distribution with parameter α and β , then

A random variable T with the t distribution having v = n + m - 2 degrees of freedom is given by

$$T = \frac{Z}{\sqrt{U/(n+m-2)}} = \frac{\left[\left(\overline{X} - \overline{Y}\right) - \left(\mu_x - \mu_y\right)\right]/\sqrt{\sigma_x^2/n + \sigma_y^2/m}}{\sqrt{\left((n-1)S_x^2/\sigma_x^2 + (m-1)S_y^2/\sigma_y^2\right)/(n+m-2)}}$$

In the statistical applications we sometimes assume that the two variances are the same, say $\sigma_x^2 = \sigma_y^2 = \sigma^2$, in which case

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_y)}{\sqrt{\left\{ \left[(n-1)S_x^2 + (m-1)S_y^2 \right] / (n+m-2) \right\} \left[(1/n) + (1/m) \right]}}$$

and neither T nor its distribution dependent on σ^2 .

Theorem 8.2-6: If U_1 and U_2 are independent chi-square variables with v_1 and v_2 degrees of freedom, respectively, then

$$F = \frac{U_1/v_1}{U_2/v_2}$$

Has an F distribution with v_1 and v_2 degrees of freedom. Its p.d.f. is

$$f(y) = \frac{\Gamma[(v_1 + v_2)/2]}{\Gamma(v_1/2)\Gamma(v_2/2)} \left(\frac{v_1}{v_2}\right)^{v_1/2} y^{(v_1/2)-1} \left(1 + \frac{v_1}{v_2}y\right)^{-(v_1 + v_2)/2}, \quad 0 < y < \infty$$

REMARK: The symbol F was first proposed by George Snedecor to honor R. A. Fisher. Sometimes it also called Snedecor's F distribution.

Proof: Omitted. The p.d.f. can be derived in a manner similar to that of the *t* distribution as in Theorem 8.2-4. \Box

If F possesses an F distribution with v_1 numerator and v_2 denominator degrees of freedom, then

$$E(F) = v_2/(v_2 - 2)$$
 if $v_2 > 2$ and $Var(F) = 2v_2^2(v_1 + v_2 - 2)/\{v_1(v_2 - 2)^2(v_2 - 4)\}$ if $v_2 > 4$

You can have both E(F) and Var(F) in a manner similar to those of the *t* distribution. Note that the mean of an *F*-distributed random variable depends only on the number of denominator degrees of freedom, v_2 .

Example 8.1-2: Let X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_m be independent random samples from populations with respectively distributions $X_i \sim N(\mu_x, \sigma_x^2)$ and $Y_j \sim N(\mu_y, \sigma_y^2)$. Since $(n-1)S_x^2/\sigma_x^2 \sim \chi^2(n-1)$ and $(m-1)S_y^2/\sigma_y^2 \sim \chi^2(m-1)$, $\frac{((n-1)S_x^2/\sigma_x^2)/(n-1)}{((m-1)S_y^2/\sigma_y^2)/(m-1)} = \frac{S_x^2\sigma_y^2}{S_y^2\sigma_x^2} \sim F((n-1), (m-1))$.

8.2 Central Limit Theorem and Limiting Moment-Generating Functions

If X_1, X_2, \dots, X_n is a random sample of size *n* from a **normal** population, Theorem 8.1-1 tell us that \overline{X} has normal sampling distribution with mean $\mu_{\overline{X}} = \mu$ and variance $\sigma_{\overline{X}}^2 = \sigma^2/n$, $\overline{X} \sim N(\mu, \sigma^2/n)$. But what can we say about the sampling distribution of \overline{X} if the variables X_i are **NOT** normally distributed? Fortunately, \overline{X} will have a sampling distribution that is approximately normal if the sample size is large. The formal statement of this result is called the central limit theorem.

Theorem 8.2-1 (Central Limit Theorem): If \overline{X} is the mean of a random sample X_1, X_2, \dots, X_n of size *n* from a distribution with $E(X_i) = \mu < \infty$ and $Var(X_i) = \sigma^2 < \infty$, then the distribution of

$$W = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n} \sigma}$$

is N(0,1) in the limit as $n \to \infty$.

Proof: This limiting result holds for random samples from any distribution with finite mean and variance, but the proof will be outlined under the stronger assumption that the moment-generating function of the distribution exists. The proof can be modified for the more general case by using a more general concept called a characteristic function, which we do not consider here.

We first consider

$$E[\exp(tW)] = E\left\{\exp\left[\left(\frac{t}{\sqrt{n}\sigma}\right)\left(\sum_{i=1}^{n}X_{i} - n\mu\right)\right]\right\}$$
$$= E\left\{\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_{1} - \mu}{\sigma}\right)\right] \times \dots \times \exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_{n} - \mu}{\sigma}\right)\right]\right\}$$
$$= E\left\{\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_{1} - \mu}{\sigma}\right)\right]\right\} \times \dots \times E\left\{\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_{n} - \mu}{\sigma}\right)\right]\right\},$$

which follows from the mutual independence of X_1, X_2, \dots, X_n . Then

$$E[\exp(tW)] = \left[M\binom{t}{\sqrt{n}}\right]^n, \qquad -h < t/\sqrt{n} < h,$$

where

$$M(t) = E\left\{\exp\left[t\left(\frac{X_i - \mu}{\sigma}\right)\right]\right\}, \quad -h < t < h,$$

is the common moment-generating function of each

$$Y_i = \frac{X_i - \mu}{\sigma}, \qquad i = 1, 2, \cdots, n.$$

Since $E(Y_i) = 0$ and $E(Y_i^2) = 1$, it must be that

$$M(0) = 1,$$
 $M'(0) = E\left(\frac{X_i - \mu}{\sigma}\right) = 0,$ $M''(0) = E\left[\left(\frac{X_i - \mu}{\sigma}\right)^2\right] = 1.$

Hence, using Taylor's formula with a remainder, we can find a number t_0 between 0 and t such that

$$M(t) = M(0) + M'(0)t + \frac{M''(t_0)t^2}{2} = 1 + \frac{M''(t_0)t^2}{2}$$

By adding and subtracting $t^2/2$, we have that

$$M(t) = 1 + \frac{t^2}{2} + \frac{\left[M''(t_0) - 1\right]t^2}{2}$$

Using this expression of M(t) in $E[\exp(tW)]$, we can represent the moment-generating function of W by

$$E[\exp(tW)] = \left\{ 1 + \frac{1}{2} \left(\frac{t}{\sqrt{n}} \right)^2 + \frac{\left[M''(t_0) - 1\right]}{2} \left(\frac{t}{\sqrt{n}} \right)^2 \right\}^n$$
$$= \left\{ 1 + \frac{t^2}{2n} + \frac{\left[M''(t_0) - 1\right]t^2}{2n} \right\}^n, \qquad -\sqrt{n} \, h < t < \sqrt{n} \, h$$

where now t_0 is between 0 and t/\sqrt{n} . Since M''(t) is continuous at t = 0 and $t_0 \to 0$ as $n \to \infty$, we have that

$$\lim_{n \to \infty} [M''(t_0) - 1] = 1 - 1 = 0$$

Thus, we have that

$$\lim_{n \to \infty} E[\exp(tW)] = \lim_{n \to \infty} \left\{ 1 + \frac{t^2}{2n} + \frac{[M''(t_0) - 1]t^2}{2n} \right\}^n = \lim_{n \to \infty} \left\{ 1 + \frac{t^2/2}{n} \right\}^n = e^{t^2/2},$$

for all real t.

We have shown that the binomial distribution can be approximated by the Poisson distribution when *n* is sufficiently large and *p* fairly small in Chapter 4. This section will show this by taking the limit of a moment-generating function. Consider the moment-generating function of *X*, which is B(n, p). We shall take the limit of this as $n \to \infty$ such that $np = \lambda$ is a constant; thus $p \to 0$. The moment-generating function of *X* is

$$M(t) = \left(1 - p + pe^t\right)^n.$$

Since $p = \lambda/n$, we have that

$$M(t) = \left[1 - \frac{\lambda}{n} + \frac{\lambda}{n}e^t\right]^n = \left[1 + \frac{\lambda(e^t - 1)}{n}\right]^n$$

Since

$$\lim_{n\to\infty} \left(1+\frac{b}{n}\right)^n = e^b,$$

we have

$$\lim_{n\to\infty} M(t) = \exp\{\lambda(e^t - 1)\},\$$

which exists for all real t. Hence a Poisson distribution seems like a reasonable approximation to the binomial one when n is large and p is small. This approximation is usually found to be fairly successful if $n \ge 20$ and $p \le 0.05$ and very successful if $n \ge 100$ and $np \le 10$.