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Chapter VIII Sampling Distributions and the Central Limit Theorem 

Functions of random variables are usually of interest in statistical application.  Consider a set 
of observable random variables nXXX ,,, 21 L .  For example, suppose the variables are a 
random sample of size n from a population. 

Definition 8.0-1:  A function of observable random variables, ),,,( 21 nXXXgU L= , 
which does not depend on any unknown parameters, is called a statistic. 

It is required that the variables be observable because of the intended use of a statistic.  The 
intent is to make inferences about the distribution of the set of random variables, and if the variables 
are not observable or if the function ),,,( 21 nXXXg L  depends on unknown parameters, then U 
would not be useful in making such inferences. 

Two important statistics are the sample mean X  and the sample variance S 2.  Of course, in 
a particular sample, say x1, x2,…, xn, we observed definite values of these statistics, x  and s 2; 
however, we should recognize that each value is only one observation of respective random variable, 
X  and S 2.  That is, each X  and S 2 is also a random variable with its own distribution. 
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8.1  Sampling Distributions Related to the Normal Distribution 

Theorem 8.1-1:  Let nXXX ,,, 21 L  be a random sample of size n from a normal 
distribution with mean µ and variance σ 2.  Then 
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is normally distributed with mean µµ =X  and variance nX
22 σσ = , ( )nNX 2,~ σµ . 

Proof:  Since the moment-generating function of each X is  
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However, the moment-generating function uniquely determines the distribution of the random 
variable.  Since this one is that associated with the normal distribution N(µ, σ 2 ⁄ n), the sample 
mean X  is N(µ, σ 2 ⁄ n).   
 

Theorem 8.2-2:  Let nZZZ ,,, 21 L  have standard normal distributions, N(0, 1).  If these 

random variables are mutually independent, then 22
2

2
1 nZZZW +++= L  has a χ 2 distribution 

with n degrees of freedom. 

Proof:  The moment-generating function of W is given by 
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Since 2
iZ  is a χ 2 distributed random variable with 1 degree of freedom, we have  
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2 nittM
iZ L=−= −  

Hence,  
2212121 )21()21()21()21()( n

W tttttM −−−− −=−××−×−= L  
The uniqueness of the moment-generating function implies that W is χ 2(n).   

Corollary 8.2-1:  If nXXX ,,, 21 L  have mutually independent normal distributions 
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has a 2χ  distribution with n degrees of freedom. 

Proof:  We simply note that ( ) iiii XZ σµ−=  is ( )1,0N , .,,2,1 ni L=    

Theorem 8.2-3:  Let nXXX ,,, 21 L  be a random sample of size n from a normal 

distribution, ( )2,σµN ,  
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Then  
(a) X  and 2S  are independent. 

(b) 
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Sn  has a 2χ  distribution with (n – 1) degrees of freedom. 

Proof:  The proof of part (a) is beyond this course; so we accept it without proof here.  To prove 
part (b), note that 
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since the cross-product term is equal to  
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But ( ) niXY ii ,,2,1, L=−= σµ , are mutually independent standard normal variables.  

Hence 22
2

2
1 nYYYW +++= L  is )(2 nχ  by Theorem 8.2-2.  Moreover, since 
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However, from part (a), X  and 2S  are independent; thus 2Z  and 2S  are also independent.  

In the moment-generating function of W, this independence permits us to write 
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Since W and 2Z  have 2χ  distributions, we can substitute their moment-generating functions to 
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obtain 
( ) 2112 )21()21(
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Equivalently, we have 
( ) 21,)21( 2)1(1 22

<−=





 −−− tteE nSnt σ . 

This, of course, is the moment-generating function of a )1(2 −nχ  variable, and accordingly 
22)1( σSn −  has this distribution.   

Theorem 8.2-4:  If Z is a standard normal distribution, ( )1,0N , if U is a 2χ  distribution 

with v degrees of freedom, and if Z and U are independent, then 
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REMARK:  This distribution was discovered by W. S. Gosset when he was working for an Irish 
brewery.  Because Gosset published under the pseudonym Student, this distribution is sometimes 
known as Student’s t distribution. 

Proof:  Since Z and U are independent, the joint p.d.f. of Z and U is 
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The distribution function )Pr()( tTtF ≤=  of T is given by 
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The p.d.f. of T is the derivative of the distribution function; so applying the Fundamental Theorem 
of Calculus to the inner integral we see that 
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In the integral make the change of variables ( )uvty 21 +=  so that ( )vtdydu 211 += .  Thus 
we find that  
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The integral is equal to 1 since the integrand is the p.d.f of a chi-square distribution with (v + 1) 
degrees of freedom.  Thus the p.d.f. is as given in the theorem.   

Note that the distribution of T is completely determined by the number v.  Its p.d.f. is 
symmetrical with respect the vertical axis t = 0 and is very similar to the graph of the p.d.f. of the 
standard normal distribution ( )1,0N .  It can be shown that 0)( =TE  for v > 1 and 

( )2)( −= vvTVar  for v > 2.1  When v = 1, the t distribution is the same as the standard Cauchy 
distribution in which the mean and the variance do not exist. 

Theorem 8.2-5:  If nXXX ,,, 21 L  denote a random sample from ( )2,σµN , then 
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Proof:  This follows from Theorem 8.2-4, since ( ) ( ) )1,0(~ NnX σµ−  and by Theorem 

8.2-3, )1(~)1( 222 −−= nSnU χσ , and X  and 2S  are independent.   

Example 8.1-1:  Let nXXX ,,, 21 L  and mYYY ,,, 21 L  be independent random samples 

from populations with respectively distributions ( )2,~ xxi NX σµ  and ( )2,~ yyj NY σµ .  The 

distributions of X  and Y  are ( )nN xx
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1 You can find these results by the following fact:  If Y has a gamma distribution with parameter α 
and β, then 
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A random variable T with the t distribution having 2−+= mnv  degrees of freedom is given by 
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In the statistical applications we sometimes assume that the two variances are the same, say 
222 σσσ == yx , in which case 
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and neither T nor its distribution dependent on 2σ .   

Theorem 8.2-6:  If U1 and U2 are independent chi-square variables with v1 and v2 degrees of 
freedom, respectively, then 
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REMARK:  The symbol F was first proposed by George Snedecor to honor R. A. Fisher.  
Sometimes it also called Snedecor’s F distribution. 

Proof:  Omitted.  The p.d.f. can be derived in a manner similar to that of the t distribution as in 
Theorem 8.2-4.   

If F possesses an F distribution with v1 numerator and v2 denominator degrees of freedom, then 

( )2)( 22 −= vvFE  if v2 > 2 and ( ) ( ) ( ){ }4222)( 2
2

2121
2
2 −−−+= vvvvvvFVar  if v2 > 4.  

You can have both )(FE  and )(FVar  in a manner similar to those of the t distribution.  Note 
that the mean of an F-distributed random variable depends only on the number of denominator 
degrees of freedom, v2. 

Example 8.1-2:  Let nXXX ,,, 21 L  and mYYY ,,, 21 L  be independent random samples 

from populations with respectively distributions ( )2,~ xxi NX σµ  and ( )2,~ yyj NY σµ .  Since 
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8.2  Central Limit Theorem and Limiting Moment-Generating Functions 

 If nXXX ,,, 21 L  is a random sample of size n from a normal population, Theorem 8.1-1 

tell us that X  has normal sampling distribution with mean µµ =X  and variance nX
22 σσ = , 

( )nNX 2,~ σµ .  But what can we say about the sampling distribution of X  if the variables 

iX  are NOT normally distributed?  Fortunately, X  will have a sampling distribution that is 
approximately normal if the sample size is large.  The formal statement of this result is called the 
central limit theorem. 

Theorem 8.2-1 (Central Limit Theorem):  If X  is the mean of a random sample 

nXXX ,,, 21 L  of size n from a distribution with ∞<= µ)( iXE  and ∞<= 2)( σiXVar , 
then the distribution of  
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is ( )1,0N  in the limit as ∞→n . 

Proof:  This limiting result holds for random samples from any distribution with finite mean and 
variance, but the proof will be outlined under the stronger assumption that the moment-generating 
function of the distribution exists.  The proof can be modified for the more general case by using a 
more general concept called a characteristic function, which we do not consider here. 

We first consider 
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which follows from the mutual independence of nXXX ,,, 21 L .  Then  
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is the common moment-generating function of each 
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Hence, using Taylor’s formula with a remainder, we can find a number t0 between 0 and t such that 
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where now t0 is between 0 and nt .  Since )(tM ′′  is continuous at t = 0 and 00 →t  as 
∞→n , we have that 
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for all real t.   

 We have shown that the binomial distribution can be approximated by the Poisson distribution 
when n is sufficiently large and p fairly small in Chapter 4.  This section will show this by taking 
the limit of a moment-generating function.  Consider the moment-generating function of X, which 
is ),( pnB .  We shall take the limit of this as ∞→n  such that λ=np  is a constant; thus 

0→p .  The moment-generating function of X is 
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we have 
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which exists for all real t.  Hence a Poisson distribution seems like a reasonable approximation to 
the binomial one when n is large and p is small.  This approximation is usually found to be fairly 
successful if 20≥n  and 05.0≤p  and very successful if 100≥n  and 10≤np . 


