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Chapter VIII Sampling Distributions and the Central Limit Theorem

Functions of random variables are usually of interest in statistical application. Consider a set
of observable random variables X4, X5,---, X,;. For example, suppose the variables are a

random sample of size n from a population.

Definition 8.0-1: A function of observable random variables, U = g(Xq, X5,-+, X),
which does not depend on any unknown parameters, is called a statistic.

It is required that the variables be observable because of the intended use of a statistic. The
intent is to make inferences about the distribution of the set of random variables, and if the variables
are not observable or if the function g(Xq, X5,:--, X,) depends on unknown parameters, then U
would not be useful in making such inferences.

Two important statistics are the sample mean X and the sample variance S%.  Of course, in
a particular sample, say X;, Xo,..., X», We observed definite values of these statistics, X and s?
however, we should recognize that each value is only one observation of respective random variable,
X andS® Thatis each X and S*isasoarandom variable with its own distribution.
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8.1  Sampling Distributions Related to the Normal Distribution

Theorem 8.1-1: Let Xq, Xp,---, X, be a random sample of size n from a normal
distribution with mean 4 and variance . Then

_ 1A
X ==X
N1
: L . o : 2 _ 2 ~ 2
isnormally distributed with mean uy = x and variance oy =0 /n, X ~ N(,u,a /n)

Proof: Since the moment-generating function of each X is

My (t) = exp(yt + Uzt%),

_ n
the moment-generating function of X = 1 > X isequa to

Ni=1
950 )« ] o 7] o 251

However, the moment-generating function uniquely determines the distribution of the random
variable. Since this one is that associated with the normal distribution N(x, o2/ n), the sample
mean X isN(y, o’/n). O

Theorem 8.2-2: Let Zy,Z5,---,Z, have standard normal distributions, N(O, 1). If these

random variables are mutually independent, then W = 212 + 222 ot Z% has a y? distribution
with n degrees of freedom.

Proof: The moment-generating function of Wis given by

tw 2, 52 2
Mw(t) = E(e ): E(exp{t(Zl + ZZ + e+ Zn )}): lez (t) X MZ% (t) X oo X MZE (t)
Since ZiZ isa y 2 distributed random variable with 1 degree of freedom, we have
Mo2(t) = @-20"2, i=12-.n
!
Hence,
My ®)=a-2)Y2x@a-2) Y2 xox@-2)¥2 = @-20y™?
The uniqueness of the moment-generating function impliesthat Wis y%(n). O
Corollary 8.2-1: If Xq,Xp,---, X,y have mutualy independent normal distributions
N(ﬂi ,aiz), I =12,---,n, respectively, then the distribution of
2
W = i (Xi = 44i)

; 2
i=1 Oj
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has a ;(2 distribution with n degrees of freedom.
Proof: Wesimply notethat Z; = (X; — g )/o; is N(0,1), i =1,2,---,n. O

Theorem 8.2-3: Let Xq, X5,---, X, be a random sample of size n from a normal

distribution, N(,u, 02),

_ 1A
X ==X
Ni=1
and
1 2
S?2=—=_3(X; - X),
g2 Xi = X)
Then
(@ X and S? areindependent.
> (x; - XP
(n-9s? 5 2
(b) > = 5 hasa y“ distribution with (n— 1) degrees of freedom.
O O

Proof: The proof of part (a) is beyond this course; so we accept it without proof here. To prove

part (b), note that
n

5 [CELELER T S

since the cross-product term is equal to

og X —ufxi=X) 2AX -y 5y g

i=1 0'2 0'2 i=1
But Y = (Xi —,u) o, 1=212--,n, ae mutualy independent standard normal variables.
Hence W = Y12 +Y22 +~~-+Yn2 IS ;(Z(n) by Theorem 8.2-2. Moreover, since
( 2/) 2 X—ﬂz n()?_ﬂ)z 2
X ~ Nl\w,o4/n), then < = = is y°(1). Thus,
(o/fn J o
a2
w = 0=DS 28 +z2,
(e

However, from part (a), X and S? are independent; thus Z? and S° are dso independent.

In the moment-generating function of W, this independence permits us to write
E(et[(n—l)82/02+22]j _ |E(et(n—1)sz/a2 o1z ) _ E(et(n—l)Sz/az )E(etzz ) _

SinceWand Z? have ;(2 distributions, we can substitute their moment-generating functions to
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obtain

(1_ Zt)—n/Z — E(et(n—l)sz/oz j (1_ Zt)—ZI/Z
Equivalently, we have
E(et(n_1)52/02j=(1— 2t)—(n—1)/2, t < ]/2

This, of course, is the moment-generating function of a ;(z(n —1) variable, and accordingly
(n-1S2/52 hasthisdistribution. O

Theorem 8.2-4: If Z is a standard normal distribution, N(0,1), if U isa 2 distribution

with v degrees of freedom, and if Z and U are independent, then
Z

U/v
has at distribution with v degrees of freedom. Itsp.d.f.is

—(v+1)/2

r(v+1)/2] 1 t2 o+t

f(t) = 1+ — ,
r(v/2) fzv v

REMARK: Thisdistribution was discovered by W. S. Gosset when he was working for an Irish

brewery. Because Gosset published under the pseudonym Student, this distribution is sometimes
known as Student’s t distribution.

—o<t<oo.

Proof: Since Z and U are independent, thejoint p.d.f. of Zand U is

2
1 7 /2 1 uv/2—l e—u/2

9(z,u) = e 0 :
J2r T(v/2)2"?2
The distribution function F(t) = Pr(T <t) of Tisgivenby

F(t) = P(Z/JU/v <) = Pz < tJU/v) = | j_tw”m 9(z,u) dzdu.

—w<zZ<ow O<u<ow,.

That is,

F(t) = dz [u¥?te"Y2du.

1 J~oo Jt u/v 6_22/2
JrT(v/2) %0 | == o(v+1)/2

The p.d.f. of T isthe derivative of the distribution function; so applying the Fundamental Theorem
of Calculusto the inner integral we see that

, 1 ooe—(u/Z)(IZ/v) U o1 uo2
f(t)=F(t)=\/;r(V/2)J‘O i \/;u e 424y
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_ - IwU(V+l)/2_l ~(w2) (1422},
JavT(v/2)Jo olv+1)/2

In the integral make the change of variables y = (1+ tz/v)u sothat du/dy = J/(1+ tz/v). Thus

we find that

T(v+1)/2) 1 t2
f(t) = w2 \/H{“V

The integral is equal to 1 since the integrand is the p.d.f of a chi-square distribution with (v + 1)
degrees of freedom. Thusthe p.d.f. isasgiveninthetheorem. 0O

(v+1)/2 -1 y /Zdy.

Jo o e
0 (v +1)/2) 20v+2)2

](v+1)/2

Note that the distribution of T is completely determined by the number v. Its p.d.f. is
symmetrical with respect the vertical axist = 0 and is very similar to the graph of the p.d.f. of the
standard normal distribution N(0,1) . It can be shown that E(T)=0 for v > 1 and
Var(T) = v/(v-2) forv>2" Whenv =1, thet distribution is the same as the standard Cauchy
distribution in which the mean and the variance do not exist.

Theorem 8.2-5: If X4, X5,---, X, denote arandom sample from N(,u,az),then
X - u
S/+/n

Proof: This follows from Theorem 8.2-4, since ()7 - ,u)/ (a/ \/ﬁ) ~ N(0,1) and by Theorem
8.2-3, U = (n—l)Sz/a2 ~ 7%(n-1,and X and S® areindependent. O

~t(n-1).

Example 8.1-1: Let X4, Xo,---, X, and Y1,Yp,---,Y,, be independent random samples
from populations with respectively distributions X; ~ N(yx,af) and Yj ~ N(/Jy,d)zl). The
distributions of X and Y are N(,ux,a)%/n) and N(yy,a)%/m), respectively. Since X and
Y areindependent, the distribution X —Y is N(,ux —,uy,a)%/n+ o)z,/m),and

7 _ (i—v)_(ﬂx ‘ﬂy)
\/af/n + a?,/m

Since (n—l)Sf/af ~ ¥?’(n-1) and (m—l)Sﬁ/a% ~ ¥?(m-1), and both are independent,

~ N(0,1).

_(n-psf (m- )S;

o2 o2

U ~ 72N+ m-2).

! You can find these results by the following fact: I Y has a gamma distribution with parameter «
and g, then

k
Elvk) = BTk 4k 0.
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A random variable T with the t distribution having v = n+ m— 2 degrees of freedom is given by

z (X =Y)- (.- 1, )]/ Jo? /n+ 07 /m

T m-2 08 o+ (m-1S, o) (e m=2)

In the statistical applications we sometimes assume that the two variances are the same, say

a)% = 05 = o2, inwhich case

T (X=Y)- (g, - ,)

Hn-02 +(m-1s2] /(n+m-2)} [wn) + @Wm)]

and neither T nor its distribution dependent on o?. O

Theorem 8.2-6: If U; and U, are independent chi-square variables with v, and v, degrees of
freedom, respectively, then

F_ Ui/
Uz /vo
Has an F distribution with v, and v, degrees of freedom. Itsp.d.f.is

v eve)2 (v Y2 g, w ) )
' T 2T, 2 H ’ HyY ’

REMARK: The symbol F was first proposed by George Snedecor to honor R. A. Fisher.
Sometimesiit also called Snedecor’s F distribution.

O<y<ow

Proof: Omitted. The p.d.f. can be derived in a manner similar to that of the t distribution as in
Theorem8.2-4. O

If F possesses an F distribution with v; numerator and v, denominator degrees of freedom, then
E(F) = v,/(v, — 2) ifv,>2and Var(F) = 2v3(v; + v, — 2)/{v1(v2 ~2)%(v, - 4)} if v, > 4.

You can haveboth E(F) and Var(F) inamanner similar to those of thet distribution. Note
that the mean of an F-distributed random variable depends only on the number of denominator
degrees of freedom, v..

Example 8.1-2: Let Xq, X5,---, X, and Yy, Yo, Yy, be independent random samples
from populations with respectively distributions X; ~ N(yx,af) and Y ~ N(yy,aﬁ). Since

(n-1s2/02 ~ z2(n-1) and (m-1)S2 /62 ~ z2(m-1),

n- >% 03 n-— S)%JZ
((((m - i)):g?af,}?((m _li) ) 832,032: - F((n-1(m-1). O
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8.2 Central Limit Theorem and Limiting M oment-Gener ating Functions

If Xq, X5,---, X, is arandom sample of size n from a normal population, Theorem 8.1-1

tell usthat X has normal sampling distribution with mean iy = u andvariance a% = az/n,

X ~ N(y,az/n). But what can we say about the sampling distribution of X if the variables
X; are NOT normally distributed? Fortunately, X will have a sampling distribution that is

approximately normal if the sample sizeislarge. The formal statement of this result is called the
central limit theorem.

Theorem 8.2-1 (Central Limit Theorem): If X is the mean of a random sample
X1, Xp,-+, X, of size n from a distribution with E(X;) = u < and Var(X;) = 02 < 0,
then the distribution of

n
_ Z Xi - Nu
X-—p_ia

" o/dn  no

w

is N(0,2) inthelimitas n — o.

Proof: This limiting result holds for random samples from any distribution with finite mean and
variance, but the proof will be outlined under the stronger assumption that the moment-generating
function of the distribution exists. The proof can be modified for the more general case by using a
more general concept called a characteristic function, which we do not consider here.

We first consider

ot el 1 £
ol 252l )
o[ 2 el 2]}

which follows from the mutual independence of X1, Xo,:--, X,. Then

E[exp(tw)] = {M(%/ﬁﬂ ~h <. %/ﬁ <h,
M(t):E{epoXia_ﬂﬂ}, ~h<t<h,

is the common moment-generating function of each

n
1

where
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Since E(Y,)=0 and E[V2)=1,it must be that
2
M(0) =1, M'(0) = E[uj =0, M"(0) = E{(u] ] 1
o o

Hence, using Taylor’s formula with a remainder, we can find a number to between 0 and t such that
n 2 n 2
M(t) = M(0) + M'(0)t +w =1+w.
By adding and subtracting t?/2, we have that

M() =1+ ﬁ + [M"(to) - 1]t2
2 2 '

Using this expression of M(t) in E[exp(tW)], we can represent the moment-generating function of W

by
Efexp(tw)] = {1+ %[ﬁf . w [ﬁ}z}n

:{1+ﬁ+[M"(t0)_l]t2} , ~Jnh<t<+nh

2n 2n

where now tp is between O and t/\/ﬁ. Since M'(t) is continuous at t = 0 and t; — 0 as

n — oo, we have that
lim[M"(t) -1]=1-1=0.

n—oo

Thus, we have that
2 " _ 2 n 2 n
lim Eexp(tw)] = |im{1+t—+['vI (to) — 1 } - Iim{1+ ﬂ} _e2

n—>o0 n—o0 2n 2n

foralrea t. O

We have shown that the binomial distribution can be approximated by the Poisson distribution
when n is sufficiently large and p fairly small in Chapter 4. This section will show this by taking
the limit of a moment-generating function. Consider the moment-generating function of X, which
is B(n, p). We shall take the limit of this as n — o« such that np = 4 is a constant; thus

p — 0. The moment-generating function of Xis
M (t) = (1— p+ pet)n.
Since p = 4/n, we have that
n t n
M (t) =[1—i+iet} ={1+ Ale _1} .
n n n
Since
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n
Iim[1+ E] = eb,
n—oo n

lim M (t) = expii le! -1,
lim M (¢) = explz e ~1)
which exists for al real t. Hence a Poisson distribution seems like a reasonable approximation to

the binomial one when nislarge and p issmall. This approximation is usually found to be fairly
successful if n> 20 and p < 0.05 and very successful if n>100 and np < 10.

we have



