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9.2 Efficiency (Rao-Cramer Inequality)

It is usually possible to obtain more than one unbiased estimator for the same target parameter
. If 1̂ and 2̂ denote two unbiased estimators for the same parameter , we prefer to use the

estimator with the smaller variance. That is, if both estimators are unbiased, 1̂ is relatively more

efficient than 2̂ if   12
ˆˆ  VarVar  .

Definition 9.2-1: The relative efficiency of an unbiased estimator ̂ of to another

unbiased estimator *̂ of is given by
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An unbiased estimator *̂ of is said to be efficient if 1)̂,̂Re( *  for all unbiased estimator

̂ of , and all . The efficiency of an unbiased estimator ̂ of t is given by

)̂,̂Re()̂,̂( **  e

if *̂ is an efficient estimator of . 

An interesting result by Rao-Cramer helps decide among several estimators since it provides a

lower bound for the variance of every unbiased estimator of . Thus we know that if a certain
unbiased estimator has a variance equal to that lower bound, we cannot find a better one and hence
it is the best in the sense of being the uniformly minimum variance unbiased estimator
(UMVUE). We describe the Cramer-Rao lower bound (CRLB) here without proof.

Let ,1X ,,2 X Xn be a random sample from a distribution with p.d.f. );( xf , = {:

c < < d}, where the support of X does not depend on so that we can differentiate, with respect to
, under integral signs like that in the following integral:
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If  nXXXuY ,,, 21  is an unbiased estimator of , then
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Note that the two integrals in the respective denominators are the expectations
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sometimes one is easier to compute than the other. It can be shown that
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The CRLB can be discussed more generally as follows: If  nXXXuY ,,, 21  is an

unbiased estimator of  , then
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Example 9.2-2: Let ,1X ,,2 X Xn be a random sample of size n from N(, 2). Assume

that 2 is known and set = . Then
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Thus the CRLB is n2 . Once again, X is an unbiased estimator of and its variance is equal

to n2 , that is the CRLB. Therefore, X is a UMVUE of .

Note that 1X is another unbiased estimator of with variance 2 . Its efficiency is

  nn 122  . This is the one of reasons to choose X to estimate  instead of any
individual observation. 

Example 9.2-3: Let ,1X ,,2 X Xn be a random sample of size n from N(, 2). Suppose
that is known and set 2 = . Then
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and since   X is N(0, 1), we obtain
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and the CRLB is n22 . Next,
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Therefore    211  n
j jXn  is an unbiased estimator of and its variance is n22 , equal to

the CRLB. Thus    211  n
j jXn  is UMVUE of . 

Example 9.2-4: Let ,1X ,,2 X Xn be a random sample of size n from N(, 2). We

assume that both and 2 are unknown and set 1 and 2
2   . Suppose that we are

interested in finding a UMVUE estimator of 2. It can be shown that the CRLB is again equal to
n2

22 by treating 1 as a constant and 2 as the parameter . We have shown that
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the RCLB. However,    1
2

1
2  nXS n

j j  is indeed a UMVUE of 2 (it will be

shown later). That is, the CRLB is not attained for the UMVUE estimator of 2, when 1 is
unknown. 


